在面積為9的正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則能使△PAB的面積大于3的概率是( �。�
A、
1
3
B、
2
3
C、
1
9
D、
8
9
考點(diǎn):幾何概型
專題:概率與統(tǒng)計(jì)
分析:根據(jù)正方形的面積可達(dá)正方形的邊長,根據(jù)△PAB的面積大于3確定P的位置,然后根據(jù)幾何概型的概率公式進(jìn)行計(jì)算.
解答: 解:∵正方形ABCD面積為9,∴正方形的邊長AB=3.
設(shè)△PAB的高為h,
則△PAB的面積等于3時(shí),有
1
2
•AB•h=3
,
1
2
×3h=3

∴h=2,即AE=2,
∴要使△PAB的面積大于3,
則h>2,即頂點(diǎn)P位于矩形CDEF內(nèi),
∴根據(jù)幾何概型的概率公式可知在面積為9的正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則能使△PAB的面積大于3的概率為:
S矩形CDEF:S矩形ABCD=DE:AE=(3-2):3=1:3,
故選:A.
點(diǎn)評:本題主要考查幾何概型的概率公式的計(jì)算,根據(jù)三角形的面積確定點(diǎn)P的位置是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=2n
(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=-1,bn+1=bn+(2n-1),且cn=
anbn
n
,求數(shù)列{cn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若動點(diǎn)M到定點(diǎn)F1(0,-1)、F2(0,1)的距離之和為2,則點(diǎn)M的軌跡為( �。�
A、橢圓
B、直線F1F2
C、線段F1F2
D、直線F1F2的垂直平分線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在二階矩陣M的作用下,點(diǎn)P(1,3)變化為點(diǎn)P1(10,6),點(diǎn)Q(2,1)變化為Q1(5,2).求二階矩陣M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從學(xué)校參加數(shù)學(xué)競賽的學(xué)生的試卷中抽取一個(gè)樣本,考察競賽的成績分布,將樣本分成5組,繪制頻率分布直方圖如圖,從左至右各小組的小長方形的高之比為1:3:6:4:2,最右邊一組的頻數(shù)是6,請結(jié)合直方圖提供的信息,解答下列問題:
(1)樣本的容量是多少?
(2)列出頻率分布表;
(3)成績落在哪個(gè)范圍的人數(shù)最多?并求出該小組的頻數(shù)、頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)底面是正三角形的三棱柱的三視圖如圖所示,則其體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B為互斥事件,給出下列結(jié)論
①P(A)+P(B)<1;
②P(A)+P(B)=1;
③P(A)+P(B)≤1;
④P(A•B)=0,
則正確結(jié)論個(gè)數(shù)為( �。�
A、4B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閻戣姤鍤勯柤鍝ユ暩娴犳艾鈹戞幊閸婃鎱ㄧ€靛憡宕叉慨妞诲亾闁绘侗鍠涚粻娑樷槈濞嗘劖顏熼梻浣芥硶閸o箓骞忛敓锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬崘顕ч埞鎴︽偐閸欏鎮欑紓浣哄閸ㄥ爼寮婚妸鈺傚亞闁稿本绋戦锟�