在直四棱柱A1B1C1D1ABCD中,當?shù)酌嫠倪呅?i>ABCD滿足條件        時,有A1CB1D1(注:填上你認為正確的一種條件即可,不必考慮所有可能的情形).
ACBD
底面四邊形是菱形等
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,是平行四邊形,點是平面外一點,的中點,在上取一點,過作平面交平面
求證:
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知S是正三角形ABC所在平面外的一點,且SA=SB=SC,SG為△SAB上的高,D、E、F分別是AC、BC、SC的中點,試判斷SG與平面DEF的位置關系,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

P在平面ABC的射影為O,且PAPB、PC兩兩垂直,那么O是△ABC的(    )
A.內心B.外心
C.垂心D.重心

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,底面ABCD,且PA=AD=DC=AB=1,M是PB的中點。(Ⅰ)證明:面PAD⊥面PCD;(Ⅱ)求AC與PB所成的角的余弦值;(Ⅲ)求面AMC與面BMC所成二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若平面α與β的法向量分別是
a
=(2,4,-3),
b
=(-1,2,2)
,則平面α與β的位置關系是( 。
A.平行B.垂直
C.相交但不垂直D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1的側棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上動點,F(xiàn)是AB中點,AC=1,BC=2,AA1=4.
(1)當E是棱CC1中點時,求證:CF平面AEB1
(2)在棱CC1上是否存在點E,使得二面角A-EB1-B的余弦值是
2
17
17
,若存在,求CE的長,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是兩條異面直線,,那么的位置關系____________________。

查看答案和解析>>

同步練習冊答案