【題目】在平面直角坐標系xOy中,設(shè)點集,令.從集合Mn中任取兩個不同的點,用隨機變量X表示它們之間的距離.
(1)當n=1時,求X的概率分布;
(2)對給定的正整數(shù)n(n≥3),求概率P(X≤n)(用n表示).
【答案】(1)見解析;
(2)見解析.
【解析】
(1)由題意首先確定X可能的取值,然后利用古典概型計算公式求得相應的概率值即可確定分布列;
(2)將原問題轉(zhuǎn)化為對立事件的問題求解的值,據(jù)此分類討論①.,②.,③.,④.四種情況確定滿足的所有可能的取值,然后求解相應的概率值即可確定的值.
(1)當時,的所有可能取值是.
的概率分布為,
.
(2)設(shè)和是從中取出的兩個點.
因為,所以僅需考慮的情況.
①若,則,不存在的取法;
②若,則,所以當且僅當,此時或,有2種取法;
③若,則,因為當時,,所以當且僅當,此時或,有2種取法;
④若,則,所以當且僅當,此時或,有2種取法.
綜上,當時,的所有可能取值是和,且
.
因此,.
科目:高中數(shù)學 來源: 題型:
【題目】
甲、乙兩個籃球運動員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為.
(Ⅰ)求乙投球的命中率;
(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】程大位是明代著名數(shù)學家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.卷八中第33問:“今有三角果一垛,底闊每面七個.問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)S為( )
A.28B.56C.84D.120
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)f(x)="xln" x–ax2+(2a–1)x,aR.
(Ⅰ)令g(x)=f'(x),求g(x)的單調(diào)區(qū)間;
(Ⅱ)已知f(x)在x=1處取得極大值.求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結(jié)束該局.
(1)若在一局中甲先摸,求甲在該局獲勝的概率;
(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某公司舉行的年終慶典活動中,主持人利用隨機抽獎軟件進行抽獎:由電腦隨機生成一張如圖所示的33表格,其中1格設(shè)獎300元,4格各設(shè)獎200元,其余4格各設(shè)獎100元,點擊某一格即顯示相應金額.某人在一張表中隨機不重復地點擊3格,記中獎的總金額為X元.
(1)求概率;
(2)求的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=3上的一動點M在x軸上的投影為N,點P滿足.
(1)求動點P的軌跡C的方程;
(2)若直線l與圓O相切,且交曲線C于點A,B,試求|AB|的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com