【題目】如圖,設a、b是異面直線,AB是a、b的公垂線,過AB的中點O作平面α與a、b分別平行,M、N分別是a、b上的任意兩點,MN與α交于點P,求證:P是MN的中點.

【答案】證明:連接AN,交平面α于點Q,連接PQ.
∵b∥α,b平面ABN,平面ABN∩α=OQ,
∴b∥OQ.又O為AB的中點,
∴Q為AN的中點.∵a∥α,a平面AMN且平面AMN∩α=PQ,
∴a∥PQ.∴P為MN的中點.

【解析】先連接AN,交平面α于點Q,連接PQ,由于b∥α,b平面ABN,平面ABN∩α=OQ,根據(jù)線面平行的性質(zhì)定理可知b∥OQ,同理可證得a∥PQ,從而確定點P的位置.
【考點精析】利用直線與平面平行的性質(zhì)對題目進行判斷即可得到答案,需要熟知一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平行四邊形 的三個頂點的坐標為 ,
(1)在 ABC中,求邊AC中線所在直線方程;
(2)求平行四邊形 的頂點D的坐標及邊BC的長度;
(3)求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD﹣A1B1C1D1為正方體,下面結論錯誤的序號是
①BD∥平面CB1D1;
②AC1⊥BD;
③AC1⊥平面CB1D1;
④異面直線AD與CB1所成角為60°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

設農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2若選取的是12月1日12月5日的兩組數(shù)據(jù),請根據(jù)12月2日12月4日的數(shù)據(jù),求出y關于x的線性回歸方程=bx+a;

3若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:,)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從氣球A上測得正前方的河流的兩岸B,C的俯角分別為67°,30°,此時氣球的高是46m,則河流的寬度BC約等于m.(用四舍五入法將結果精確到個位.參考數(shù)據(jù):sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80, ≈1.73)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若兩條異面直線所成的角為90°,則稱這對異面直線為“理想異面直線對”,在連接正方體各頂點的所有直線中,“理想異面直線對”的對數(shù)為(
A.24
B.48
C.72
D.78

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 經(jīng)過點,左右焦點分別為、,圓與直線相交所得弦長為2. 

(Ⅰ)求橢圓的標準方程;

(Ⅱ)設是橢圓上不在軸上的一個動點, 為坐標原點,過點的平行線交橢圓、兩個不同的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題p:關于x的方程x2+ax+2=0無實根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【選做題】

A.[選修4-1:幾何證明選講]

如圖,四邊形是圓的內(nèi)接四邊形, , 的延長線交的延長線于點.

求證: 平分.

B.[選修4-2:矩陣與變換]

已知變換 ,試寫出變換對應的矩陣,并求出其逆矩陣.

C.[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)).若直線與曲線相交于兩點,求線段的長.

D.[選修4-5:不等式選講]

均為正數(shù),且,求證 .

查看答案和解析>>

同步練習冊答案