已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<
π
2
,A>0)的最小正周期為π,最小值為-4,它的圖象經(jīng)過點P(0,2
3
).
(1)求函數(shù)f(x)的解析式;
(2)f(x)的圖象經(jīng)過怎樣的平移和伸縮變換,可以得到y(tǒng)=4sinx的圖象?
考點:函數(shù)y=Asin(ωx+φ)的圖象變換,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)的最值求出A,由周期求出ω,由特殊點的坐標求出φ的值,可得函數(shù)的解析式.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律得出結(jié)論.
解答: 解:(1)最小正周期T=
ω
=π,∴ω=2.
根據(jù)函數(shù)f(x)的最小值為-4,可得A=4.
再把點P(0,2
3
)代入函數(shù)的解析式可得sinφ=
3
2
,結(jié)合0<φ<
π
2
,可得φ=
π
3

∴f(x)=4sin(2x+
π
3
).
(2)將f(x)=4sin(2x+
π
3
)的圖象上的每個點的橫坐標伸長為原來的兩倍,
縱坐標不變,可以得到y(tǒng)=4sin(x+
π
3
)的圖象,
再向右平移
π
3
個單位,可以得到 y=4sinx的圖象.
點評:本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx+2ny-4=0(m,n∈R)將圓x2+y2-4x-2y-4=0分成兩段相等的弧,則m+n等于(  )
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機變量ξ的分布列如下表所示:
ξ 0 1 2
P 0.4 p 0.3
則表中p值等于( 。
A、0.1B、0.2
C、0.3D、0.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在兩個袋內(nèi),分別裝著寫有0,1,2,3,4,5六個數(shù)字的6張卡片,今從每個袋中各任取一張卡片,則兩數(shù)之和等于5的概率為(  )
A、
1
3
B、
1
6
C、
1
9
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為2的正三角形△ABC所在平面與等腰直角三角形DBC所在平面相互垂直,已知DB=DC,AE=1,AE⊥平面ABC.
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)求證:BD⊥平面CDE;
(Ⅲ)求三棱錐C-BDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m≥2,求證:
m2-2
-
2
≥m-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

分解因式:
(1)5x2-15x+2xy-6y
(2)3a3b-81b4
(3)-a4+16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在x∈[-e,0)上的函數(shù)f(x)=ax-ln(-x),是否存在實數(shù)a,使f(x)的最小值為3,若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+x,則f′(1)=
 

查看答案和解析>>

同步練習(xí)冊答案