如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點(diǎn)M是SD的中點(diǎn),ANSC且交SC于點(diǎn)N.

(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.

(Ⅰ)見解析;(Ⅱ)見解析.

解析試題分析:(Ⅰ) 連接,交于點(diǎn),連接,證明,依據(jù)直線與平面平行的判定定理可知,;(Ⅱ)先由已知條件得到,依據(jù)直線與平面垂直的判定定理證得,再由,依據(jù)直線與平面垂直的判定定理證得,從而有,結(jié)合已知條件,依據(jù)直線與平面垂直的判定定理證得,再依據(jù)平面與平面垂直的判定定得到.
試題解析:(Ⅰ)連接,交于點(diǎn),連接

為矩形,
中點(diǎn),又中點(diǎn),∴.
,,∴.
(Ⅱ)∵,∴,
為矩形,∴,且
,∴,
,的中點(diǎn),∴,且,
,
 ,又∵,且, ∴,
,∴.
考點(diǎn):1.直線與平面平行的判定定理;2.直線與平面垂直的判定定理;3.直線與平面垂直的性質(zhì)定理;4.平面與平面垂直的判定定理

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,點(diǎn)分別是棱的中點(diǎn).

(1)求證://平面;
(2)若平面平面,,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知AB為圓O的直徑,點(diǎn)D為線段AB上一點(diǎn),且,點(diǎn)C為圓O上一點(diǎn),且.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.

(1)求證:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面四邊形ABCD中,已知,,現(xiàn)將四邊形ABCD沿BD折起,使平面ABD平面BDC,設(shè)點(diǎn)F為棱AD的中點(diǎn).

(1)求證:DC平面ABC;
(2)求直線與平面ACD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°.

(1)求證:BD⊥PC;
(2)設(shè)E為PC的中點(diǎn),點(diǎn)F在線段AB上,若直線EF∥平面PAD,求AF的長(zhǎng);
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖的幾何體中,平面為正方形,平面為等腰梯形,,.

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為直角梯形,,垂直于底面,分別為的中點(diǎn).

(1)求證:;
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:
⑵如果,求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,,的中點(diǎn).

(1)若,求證:平面平面
(2)點(diǎn)在線段上,,試確定的值,使平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案