如圖,直角坐標(biāo)系中,一直角三角形,,B、D在軸上且關(guān)于原點對稱,在邊上,BD=3DC,△ABC的周長為12.若一雙曲線以B、C為焦點,且經(jīng)過A、D兩點.
⑴ 求雙曲線的方程;
⑵ 若一過點(為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點的兩點、,且,問在軸上是否存在定點,使?若存在,求出所有這樣定點的坐標(biāo);若不存在,請說明理由
(1) (2)在軸上存在定點,使.
解析試題分析:(1) 設(shè)雙曲線的方程為,則.
由,得,即.
∴ 3分
解之得,∴.
∴雙曲線的方程為. 5分
(2) 設(shè)在軸上存在定點,使.
設(shè)直線的方程為,.
由,得.
即 ① 6分
∵,,
∴.
即. ② 8分
把①代入②,得 ③ 9分
把代入并整理得
其中且,即且.
. 10分
代入③,得,化簡得 .當(dāng)時,上式恒成立.
因此,在軸上存在定點,使. 13分
考點:本題主要考查雙曲線的方程,直線與雙曲線的位置關(guān)系,平面向量的坐標(biāo)運算。
點評:難題,曲線關(guān)系問題,往往通過聯(lián)立方程組,得到一元二次方程,運用韋達(dá)定理。本題(1)求雙曲線方程時,應(yīng)用了雙曲線的定義及其幾何性質(zhì),難度不大,較為典型。(2)則在應(yīng)用韋達(dá)定理的基礎(chǔ)上,通過平面向量的坐標(biāo)運算,達(dá)到證明目的。
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點分別為,
上頂點為,在軸負(fù)半軸上有一點,滿足,且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)是過三點的圓上的點,到直線的最大距離等于橢圓長軸的長,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于兩點,線段的中垂線與軸相交于點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,直線過點,,且與橢圓相切于點.(Ⅰ)求橢圓的方程;(Ⅱ)是否存在過點的直線與橢圓相交于不同的兩點、,使得?若存在,試求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓:的離心率為,過右焦點且斜率為的直線交橢圓于兩點,為弦的中點,為坐標(biāo)原點.
(1)求直線的斜率;
(2)求證:對于橢圓上的任意一點,都存在,使得成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,F1,F2是離心率為的橢圓C:(a>b>0)的左、右焦點,直線:x=-將線段F1F2分成兩段,其長度之比為1 : 3.設(shè)A,B是橢圓C上的兩個動點,線段AB的中垂線與C交于P,Q兩點,線段AB的中點M在直線l上.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點,兩個焦點分別為,,點在橢圓 上,過點的直線與拋物線交于兩點,拋物線在點處的切線分別為,且與交于點.
(1) 求橢圓的方程;
(2) 是否存在滿足的點? 若存在,指出這樣的點有幾個(不必求出點的坐標(biāo)); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角坐標(biāo)系xOy中,已知點P,曲線C的參數(shù)方程為(φ為參數(shù))。以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為。
(1)判斷點P與直線l的位置關(guān)系,說明理由;
(2)設(shè)直線l與直線C的兩個交點為A、B,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的曲線是由部分拋物線和曲線“合成”的,直線與曲線相切于點,與曲線相切于點,記點的橫坐標(biāo)為,其中.
(1)當(dāng)時,求的值和點的坐標(biāo);
(2)當(dāng)實數(shù)取何值時,?并求出此時直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com