正方體的八個頂點共可以連成28條直線,從這28條直線中任取2條直線,這2條直線恰好是一對異面直線.則這樣不同的異面直線有多少對( 。
A、174B、87
C、348D、84
考點:排列、組合及簡單計數(shù)問題
專題:應用題,排列組合
分析:分類討論其中直線異面的情況,可得異面直線的組數(shù).
解答: 解:分類討論:
①、棱與棱異面:每條棱有4條棱與其異面,共有情況
1
2
×12×4=24組,
②、棱與面對角線異面:每條棱有6條面對角線與其異面,共有情況12×6=72組,
③、棱與體對角線異面:每條棱有2條面對角線與其異面,共有情況12×2=24組,
④、面對角線與面對角線異面:每條面對角線與5條面對角線異面,共有情況
1
2
×12×5=30組,
⑤、面對角線與體對角線異面:每條面對角線與2條面對角線異面,共有情況12×2=24組,
則異面直線的組數(shù)為24+72+24+30+24=174組,
故選:A.
點評:本題考查正方體的結構特征,涉及異面直線的判斷方法,難點是正確分類討論.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個空間幾何體的正視圖,側視圖,俯視圖都為全等的等腰直角三角形(如圖所示),如果直角三角形的直角邊長為1,那么這個幾何體的外接球的體積為( 。
A、3π
B、
3
2
π
C、12π
D、
3+
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在長方體ABCD-A1B1C1D1中,若棱BB1=BC=1,AB=
3
,則異面直線D1B和AC所成角的余弦值為( 。
A、1
B、
3
3
C、
1
2
D、
5
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

“x=4”是“x2-4x=0”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xa的圖象過點(4,2),令an=
1
f(n+1)+f(n)
,n∈N*.記數(shù)列{an}的前n項和為Sn,則S2013=( 。
A、
2012
-1
B、
2013
-1
C、
2014
-1
D、
2014
+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,底面ABCD是正方形,PA=AD=2,PA⊥平面ABCD,E,F(xiàn)分別是線段AB,BC的中點,則PE與FD所成角的余弦值為( 。
A、-
2
5
B、-
1
2
C、
2
5
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙、丙、丁四位同學各自對A,B兩變量的線性相關性作試驗,并用回歸分析方法分別求得相關系數(shù)r與殘差平方和m如下表:
r 0.82 0.78 0.69 0.85
m 93 96 101 90
則(  )同學的試驗結果體現(xiàn)A,B兩變量有更強的線性相關性.
A、甲B、乙C、丙D、丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,將等腰直角△ABC沿斜邊BC上的高AD折成一個二面角,使得∠B′AC=60°.那么這個二面角大小是( 。
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=|x2-4x-5|,g(x)=k(x-7)
(1)畫出f(x)的簡圖;
(2)若方程f(x)=g(x)有三個不等實根,求k值的集合;
(3)如果x∈[-1,5]時,函數(shù)f(x)的圖象總在直線y=k(x-7)的下方,試求出k值的集合.

查看答案和解析>>

同步練習冊答案