已知<α<,A、B、C在同一個平面直角坐標(biāo)系中的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα).

(Ⅰ)若,求角α的值;

(Ⅱ)當(dāng)時,求的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1、F2,短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明:
OM
OP
為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F,A(-a,0),B(0,b)為橢圓的兩個頂點,若F到AB的距離等于
b
7
,則橢圓的離心率為( 。
A、
7-
7
7
B、
7+
7
7
C、
1
2
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1(-c,0),F(xiàn)2(c,0),若橢圓上存在一點P使
a
sin∠PF1F2
=
c
sin∠PF2F1
,則該橢圓的離心率的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,角A,B,C的對邊分別為a,b,c,且
3
sinB-cosB=1

(Ⅰ)若A=
12
,b=1,求c;
(Ⅱ)若a=2c,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的焦距為2c,且a,b,c依次成等差數(shù)列,則橢圓的離心率為
 

查看答案和解析>>

同步練習(xí)冊答案