13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(x-\frac{1}{x})^{8},x<0}\\{-\sqrt{x},x≥0}\\{\;}\end{array}\right.$,則當(dāng)x>0時(shí),f[f(x)]表達(dá)式的展開(kāi)式中常數(shù)項(xiàng)為(  )
A.-20B.20C.-70D.70

分析 根據(jù)分段函數(shù)求出f[f(x)]的解析式,再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式即可求出展開(kāi)式的常數(shù)項(xiàng).

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(x-\frac{1}{x})^{8},x<0}\\{-\sqrt{x},x≥0}\\{\;}\end{array}\right.$,
∴當(dāng)x>0時(shí),f[f(x)]=f(-$\sqrt{x}$)=${(-\sqrt{x}+\frac{1}{\sqrt{x}})}^{8}$=${(\sqrt{x}-\frac{1}{\sqrt{x}})}^{8}$,
其展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{8}^{r}$•${(\sqrt{x})}^{8-r}$•${(-\frac{1}{\sqrt{x}})}^{r}$=(-1)r•${C}_{8}^{r}$•x4-r
令4-r=0,解得r=4;
∴展開(kāi)式的常數(shù)項(xiàng)為:
T5=(-1)4•${C}_{8}^{4}$=70.
故選:D.

點(diǎn)評(píng) 本題考查了分段函數(shù)與二項(xiàng)式展開(kāi)式通項(xiàng)公式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列幾何體是組合體的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.角α的終邊上有一點(diǎn)M(-2,4),則tanα=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.有下列數(shù)組排成一排:$(\frac{1}{1}),(\frac{2}{1},\frac{1}{2}),(\frac{3}{1},\frac{2}{2},\frac{1}{3}),(\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4}),(\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}),…$如果把上述數(shù)組中的括號(hào)都去掉會(huì)形成一個(gè)數(shù)列:$\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}$,…有同學(xué)觀察得到$\frac{63×64}{2}$=2016,據(jù)此,該數(shù)列中的第2012項(xiàng)是$\frac{5}{59}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.對(duì)兩個(gè)變量y和x進(jìn)行回歸分析,得到一組樣本數(shù)據(jù):(x1,y1),(x2,y2),…,(xn,yn),則下列說(shuō)法中不正確的是(  )
A.樣本方差反映了所有樣本數(shù)據(jù)與樣本平均值的偏離程度
B.殘差平方和越小的模型,擬合的效果越好
C.用相關(guān)指數(shù)R2來(lái)刻畫(huà)回歸效果,R2的值越小,說(shuō)明模型的擬合效果越好
D.在回歸分析中,代表了數(shù)據(jù)點(diǎn)和它在回歸直線上相應(yīng)位置的差異的是殘差平方和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)y=4tan(2x+$\frac{π}{3}$)+1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.地球赤道的半徑為6370km,則赤道上1弧度角所對(duì)的圓弧長(zhǎng)為6370km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2x3-bx2+cx+d的圖象過(guò)點(diǎn)P(0,2),且在點(diǎn)M(1,f(1))處的切線方程為x-y-2=0.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E,F(xiàn),G分別為棱AA1,BB1,A1B1的中點(diǎn),則點(diǎn)G到平面EFD1的距離為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

同步練習(xí)冊(cè)答案