9.P是雙曲線C:$\frac{x^2}{2}-{y^2}$=1右支上一點(diǎn),直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F(xiàn)1是雙曲線C的左焦點(diǎn),則|PF1|+|PQ|的最小值為( 。
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

分析 依題意,當(dāng)且僅當(dāng)Q、P、F2三點(diǎn)共線,且P在F2,Q之間時(shí),|PF2|+|PQ|最小,且最小值為F2到l的距離,從而可求得|PF1|+|PQ|的最小值.

解答 解:設(shè)右焦點(diǎn)分別為F2,
∵∴|PF1|-|PF2|=2$\sqrt{2}$,
∴|PF1|=|PF2|+2$\sqrt{2}$,
∴|PF1|+|PQ|=|PF2|+2$\sqrt{2}$+|PQ|,
當(dāng)且僅當(dāng)Q、P、F2三點(diǎn)共線,且P在F2,Q之間時(shí),|PF2|+|PQ|最小,且最小值為F2到l的距離,
可得l的方程為y=$±\frac{1}{\sqrt{2}}$x,F(xiàn)2($\sqrt{3},0$),F(xiàn)2到l的距離d=1
∴|PQ|+|PF1|的最小值為2$\sqrt{2}$+1.
故選D.

點(diǎn)評(píng) 本題考查雙曲線的簡(jiǎn)單性質(zhì),利用雙曲線的定義將|PF1|轉(zhuǎn)化為|PF2|+2$\sqrt{2}$是關(guān)鍵,考查轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在等差數(shù)列{an}中,已知a1+a2+a3=9,a2a4=21,數(shù)列{bn}滿足$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}=1-\frac{1}{2^n}({n∈{N^*}}),{S_n}={b_1}+{b_2}+…+{b_n}$,若Sn>2,則n的最小值為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在兩坐標(biāo)軸上截距均為m(m∈R)的直線l1與直線l2:2x+2y-3=0的距離為$\sqrt{2}$,則m=( 。
A.$\frac{7}{2}$B.7C.-1或7D.-$\frac{1}{2}$或$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,a、b、c分別是三內(nèi)角A、B、C對(duì)應(yīng)的三邊,已知b2+c2=a2+bc
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.二項(xiàng)式${({{x^2}-\frac{1}{x}})^6}$的展開(kāi)式中( 。
A.不含x9項(xiàng)B.含x4項(xiàng)C.含x2項(xiàng)D.不含x項(xiàng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}中,b1=1,b2=2,從數(shù)列{an}中取出第bn項(xiàng)記為cn,若{cn}是等比數(shù)列,求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知M={x|0<x<2},N={x|y=lg(x-1)},則M∩N=( 。
A.{x|0<x<2}B.{x|1<x<2}C.{x|x>0}D.{x|x≥1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,且離心率是$\frac{1}{2}$,過(guò)坐標(biāo)原點(diǎn)O的任一直線交橢圓C于M、N兩點(diǎn),且|NF2|+|MF2|=4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l:y=kx+m與橢圓C交于不同的兩點(diǎn)A、B,且與圓x2+y2=1相切,
(i)求證:m2=k2+1;
(ii)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知直線2x+y-2=0經(jīng)過(guò)橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點(diǎn)與右焦點(diǎn),則橢圓的方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

查看答案和解析>>

同步練習(xí)冊(cè)答案