19.已知直線2x+y-2=0經(jīng)過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點(diǎn)與右焦點(diǎn),則橢圓的方程為(  )
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{9}+\frac{y^2}{4}=1$D.$\frac{x^2}{6}+\frac{y^2}{4}=1$

分析 求出直線與坐標(biāo)軸的解交點(diǎn),推出橢圓的a,b,即可得到橢圓方程.

解答 解:直線2x+y-2=0經(jīng)過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>0,b>0)$的上頂點(diǎn)與右焦點(diǎn),
可得c=1,b=2,可得a=$\sqrt{5}$,
則橢圓的方程為:$\frac{x^2}{5}+\frac{y^2}{4}=1$.
故選:A.

點(diǎn)評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.P是雙曲線C:$\frac{x^2}{2}-{y^2}$=1右支上一點(diǎn),直線l是雙曲線C的一條漸近線,P在l上的射影為Q,F(xiàn)1是雙曲線C的左焦點(diǎn),則|PF1|+|PQ|的最小值為( 。
A.1B.$2+\frac{{\sqrt{15}}}{5}$C.$4+\frac{{\sqrt{15}}}{5}$D.$2\sqrt{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,給定由10個點(diǎn)(任意相鄰兩點(diǎn)距離為1,)組成的正三角形點(diǎn)陣,在其中任意取三個點(diǎn),以這三個點(diǎn)為頂點(diǎn)構(gòu)成的正三角形的個數(shù)是(  )
A.12B.13C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若角α和β的終邊關(guān)于直線x+y=0對稱,且α=-$\frac{π}{3}$,則角β的集合是{ β|β=2kπ-$\frac{π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(1)求值:(0.064)${\;}^{-\frac{1}{3}}$-(-$\frac{1}{2\sqrt{2}}$)-2÷160.75+($\sqrt{2}$-2017)0;
(2)求值:$\frac{lg\sqrt{27}+lg8-lg\sqrt{1000}}{lg1.2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$f(x)={sin^2}x+\sqrt{3}sinxcosx-\frac{1}{2}(x∈R)$.
(1)求函數(shù)f(x)的最小正周期與值域;
(2)設(shè)△ABC內(nèi)角A,B,C的對邊分別為a,b,c,A為銳角,$a=2\sqrt{3},c=4$,若f(A)=1,求A,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.拋物線y2=20x的焦點(diǎn)到準(zhǔn)線的距離是( 。
A.5B.10C.15D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果方程Ax+By+C=0表示的直線是x軸,則A、B、C滿足( 。
A.A•C=0B.B≠0C.B≠0且A=C=0D.A•C=0且B≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,a=2,$B=\frac{π}{3}$,△ABC的面積等于$\frac{\sqrt{3}}{2}$,則b等于( 。
A.$\frac{\sqrt{3}}{2}$B.1C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊答案