11.對于函數(shù)f(x),如果存在非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=x2,則y=f(x)與y=log5x的圖象的交點個數(shù)為( 。
A.3B.4C.5D.6

分析 f(x)是周期為2的周期性函數(shù),根據(jù)函數(shù)的周期性畫出圖形,利用數(shù)形結合思想能求出y=f(x)與y=log5x的圖象的交點個數(shù).

解答 解:∵函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),
∴f(x)是周期為2的周期性函數(shù),
又x∈[-1,1]時,f(x)=x2
根據(jù)函數(shù)的周期性畫出圖形,如圖,
由圖可得y=f(x)與y=log5x的圖象有4個交點
故選:B.

點評 本題考查兩個函數(shù)的圖象的交點個數(shù)的求法,是基礎題,解題時要認真審題,注意數(shù)形結合思想的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若a=20.5,b=logπ3,c=-log23,則( 。
A.a<c<bB.c<a<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.定義在區(qū)間D上的函數(shù)f(x),如果滿足:對任意x∈D,都存在常數(shù)M≥0,有|f(x)|≤M,則稱f(x)是區(qū)間D上有界函數(shù),其中M稱為f(x)上的一個上界,已知函數(shù)g(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{1-x}$為奇函數(shù).
(1)求函數(shù)g(x)在區(qū)間[$\frac{1}{3}$,$\frac{3}{5}$]上的所有上界構成的集合;
(2)若g(1-m)+g(1-m2)<0,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)$y={(\frac{1}{2})^{{x^2}-2}}$的值域是(0,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,矩形草坪AMPN中,點C在對角線MN上.CD垂直于AN于點D,CB垂直于AM于點B,|CD|=|AB|=3米,|AD|=|BC|=2米,設|DN|=x米,|BM|=y米.求這塊矩形草坪AMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$-2$\overrightarrow$等于(  )
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>1)}\\{{x}^{2}+1(x≤1)}\end{array}\right.$,則f(f(1))的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,a,b,c分別為三個內(nèi)角A,B,C所對的邊,設向量$\overrightarrow{m}$=(b-c,c-a),$\overrightarrow{n}$=(b,c+a),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.若直線y=bx+c過圓C:x2+y2-2x-2y=1的圓心,則△ABC面積的最大值為( 。
A.$\frac{\sqrt{2}}{6}$B.$\frac{\sqrt{3}}{16}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習冊答案