3.設(shè)平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),則$\overrightarrow{a}$-2$\overrightarrow$等于( 。
A.(3,7)B.(7,7)C.(7,1)D.(3,1)

分析 利用平面向量坐標(biāo)運(yùn)算法則求解.

解答 解:∵平面向量$\overrightarrow{a}$=(5,3),$\overrightarrow$=(1,-2),
∴$\overrightarrow{a}$-2$\overrightarrow$=(5,3)-(2,-4)=(3,7).
故選:A.

點(diǎn)評(píng) 本題考查向量的運(yùn)算,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量坐標(biāo)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.雙曲線$\frac{x^2}{m}-\frac{y^2}{6}=1$的一條漸近線方程為y=x,則實(shí)數(shù)m的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.請(qǐng)寫(xiě)出“好貨不便宜”的等價(jià)命題:便宜沒(méi)好貨.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.對(duì)于函數(shù)f(x),如果存在非零常數(shù)T,使得當(dāng)x取定義域內(nèi)的每一個(gè)值時(shí),都有f(x+T)=f(x),那么函數(shù)f(x)就叫做周期函數(shù),已知函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=x2,則y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.閱讀下面材料,嘗試類(lèi)比探究函數(shù)y=x2-$\frac{1}{{x}^{2}}$的圖象,寫(xiě)出圖象特征,并根據(jù)你得到的結(jié)論,嘗試猜測(cè)作出函數(shù)對(duì)應(yīng)的圖象.
閱讀材料:
我國(guó)著名數(shù)學(xué)家華羅庚先生曾說(shuō):數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微,數(shù)形結(jié)合百般好,隔裂分家萬(wàn)事休.
在數(shù)學(xué)的學(xué)習(xí)和研究中,常用函數(shù)的圖象來(lái)研究函數(shù)的性質(zhì),也常用函數(shù)的解析式來(lái)琢磨函數(shù)的圖象的特征.我們來(lái)看一個(gè)應(yīng)用函數(shù)的特征研究對(duì)應(yīng)圖象形狀的例子.
對(duì)于函數(shù)y=$\frac{1}{x}$,我們可以通過(guò)表達(dá)式來(lái)研究它的圖象和性質(zhì),如:
(1)在函數(shù)y=$\frac{1}{x}$中,由x≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過(guò)y軸,即圖象與y軸不相交;由y≠0,可以推測(cè)出,對(duì)應(yīng)的圖象不經(jīng)過(guò)x軸,即圖象與x軸不相交.
(2)在函數(shù)y=$\frac{1}{x}$中,當(dāng)x>0時(shí)y>0;當(dāng)x<0時(shí)y<0,可以推測(cè)出,對(duì)應(yīng)的圖象只能在第一、三象限;
(3)在函數(shù)y=$\frac{1}{x}$中,若x∈(0,+∞)則y>0,且當(dāng)x逐漸增大時(shí)y逐漸減小,可以推測(cè)出,對(duì)應(yīng)的圖象越向右越靠近x軸;若x∈(-∞,0),則y<0,且當(dāng)x逐漸減小時(shí)y逐漸增大,可以推測(cè)出,對(duì)應(yīng)的圖象越向左越靠近x軸;
(4)由函數(shù)y=$\frac{1}{x}$可知f(-x)=-f(x),即y=$\frac{1}{x}$是奇函數(shù),可以推測(cè)出,對(duì)應(yīng)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng).
結(jié)合以上性質(zhì),逐步才想出函數(shù)y=$\frac{1}{x}$對(duì)應(yīng)的圖象,如圖所示,在這樣的研究中,我們既用到了從特殊到一般的思想,由用到了分類(lèi)討論的思想,既進(jìn)行了靜態(tài)(特殊點(diǎn))的研究,又進(jìn)行了動(dòng)態(tài)(趨勢(shì)性)的思考.讓我們享受數(shù)學(xué)研究的過(guò)程,傳播研究數(shù)學(xué)的成果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知α,β∈(0,$\frac{π}{2}$),且滿足sinα=$\frac{\sqrt{10}}{10}$,cosβ=$\frac{2\sqrt{5}}{5}$,則α+β的值為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{3π}{4}$D.$\frac{π}{4}$或$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2sinx
(Ⅰ)求f(-$\frac{π}{6}$)的值;
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)f(x)=2sin(ωx-$\frac{π}{6}$)-1(ω>0)最小正周期是π,則函數(shù)f(x)的單調(diào)遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)函數(shù)f(x)=cosωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后,所得的圖象與原圖象重合,則ω的最小值等于( 。
A.$\frac{1}{2}$B.2C.8D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案