7.對(duì)于函數(shù)y=2x2+4x-3,當(dāng)x≤0時(shí),求y的取值范圍.

分析 由已知中函數(shù)的解析式,分析函數(shù)的圖象和性質(zhì),進(jìn)而確定函數(shù)的最值,可得當(dāng)x≤0時(shí),y的取值范圍.

解答 解:∵函數(shù)y=2x2+4x-3的圖象是開(kāi)口朝上且以直線x=-1為對(duì)稱軸的拋物線,
故當(dāng)x≤0時(shí),
函數(shù)無(wú)最大值,當(dāng)x=-1時(shí),函數(shù)取最小值-5,
故當(dāng)x≤0時(shí),y的取值范圍為[-5,+∞)

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),熟練掌握二次函數(shù)的圖象和性質(zhì)是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}}\right.$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$ρsin(θ-\frac{π}{4})=2\sqrt{2}$.
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)y=x2-2x+5,求函數(shù)在區(qū)間[m,3]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知函數(shù)f(x)=x2,求f(x-1);
(2)已知函數(shù)f(x-1)=x2,求f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求y=3x2-6lnx的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{2}{x}$-x,對(duì)$?x∈[\frac{1}{3},\frac{2}{3}]$,有f(1-x)≥$\frac{a}{f(x)}$恒成立,則實(shí)數(shù)a的取值范圍為(-∞,$\frac{49}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知圓經(jīng)過(guò)點(diǎn)A(2,0)和點(diǎn)B(3,1),且圓心C在直線x-y-3=0上,過(guò)點(diǎn)P(0,1)且斜率為k的直線與圓C相交于不同的兩點(diǎn).求圓C的方程,同時(shí)求出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.sinα+cos(α+$\frac{π}{6}$)=$\frac{1}{3}$,則sin(α+$\frac{π}{3}$)=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若數(shù)列{an}是首項(xiàng)為6-12t,公差為6的等差數(shù)列;數(shù)列{bn}的前n項(xiàng)和為Sn=3n-t,其中t為實(shí)常數(shù).
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}是等比數(shù)列,試證明:對(duì)于任意的n(n∈N*),均存在正整數(shù)Cn,使得bn+1=a${\;}_{{c}_{n}}$,并求數(shù)列{cn}的前n項(xiàng)和Tn;
(Ⅲ)設(shè)數(shù)列{dn}滿足dn=an•bn,若{dn}中不存在這樣的項(xiàng)dk,使得“dk<dk-1”與“dk<dk+1”同時(shí)成立(其中k≥2,k∈N*),求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案