2.如圖所示,側(cè)棱與底面垂直,且底面為正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M、N分別在AD1、BC上移動(dòng),始終保持MN∥平面DCC1D1,設(shè)BN=y,MN=x,則函數(shù)y=f(x)的圖象大致是(  )
A.B.C.D.

分析 由MN∥平面DCC1D1,過M點(diǎn)向AD做垂線,垂足為E,則ME=2AE=2BN,由此易得到函數(shù)y=f(x)的解析式,分析函數(shù)的性質(zhì),并逐一比照四個(gè)答案中的圖象,得到函數(shù)的圖象.

解答 解:MN∥平面DCC1D1,
則x=|MN|=$\sqrt{C{D}^{2}+(2BN)^{2}}=\sqrt{4{y}^{2}+1}$,
∴x2=4y2+1,即$y=\frac{1}{2}\sqrt{{x}^{2}-1}$.
即函數(shù)y=f(x)的解析式為
f(x)=$\frac{1}{2}\sqrt{{x}^{2}-1}$(x≥1).
其圖象過(1,0)點(diǎn),在區(qū)間[1,+∞)上呈凸?fàn)顔握{(diào)遞增.
故選:C.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是線面平行的性質(zhì),函數(shù)的圖象與性質(zhì)等,根據(jù)已知列出函數(shù)的解析式是解答本題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=$\frac{1}{2}$,2an=an-1+($\frac{1}{2}$)n,求通項(xiàng)公式和a7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知三棱柱ABO-DCE的頂點(diǎn)A、B、C、D、E均在以頂點(diǎn)O為球心、半徑為2的球面上,其中AB=2,則三棱柱的側(cè)面積為( 。
A.2+2$\sqrt{3}$B.2+4$\sqrt{3}$C.4+4$\sqrt{3}$D.4+6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在DB的延長線上,且$\overrightarrow{DB}$=2$\overrightarrow{BE}$,點(diǎn)M在線段BE上,若$\overrightarrow{AM}$=$λ\overrightarrow{AB}$+$μ\overrightarrow{AC}$,則λ+μ的取值范圍是[1,$\frac{5}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義g(x)=f(x)-x的零點(diǎn)x0為f(x)的不動(dòng)點(diǎn),已知函數(shù)f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)若函數(shù)g(x)只有一個(gè)零點(diǎn)且b>1,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在極坐標(biāo)系中,兩條曲線的極坐標(biāo)方程分別為ρ=1,ρ=2sin($\frac{π}{6}$-θ),它們相交于A,B兩點(diǎn),求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若atanα>btanα>1,(a>0、a≠1,b>0,b≠1,$\frac{π}{2}$<α<π),則( 。
A.a>b>1B.b>a>1C.a<b<1D.b<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-t}\\{y=2-\sqrt{3}t}\end{array}\right.$(t為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+4ρsinθ=3,直線l與曲線C交于A,B兩點(diǎn).
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{x+y≤4}\\{-2x+y+c≥0}\end{array}\right.$目標(biāo)函數(shù)z=6x+2y的最小值是10,則z的最大值是( 。
A.20B.22C.24D.26

查看答案和解析>>

同步練習(xí)冊(cè)答案