19.某學(xué)習(xí)小組6名同學(xué)的英語口試成績?nèi)缜o葉圖所示,則這些成績的中位數(shù)為85.

分析 由莖葉圖把學(xué)習(xí)小組6名同學(xué)的英語口試成績從小到大排列起來,能求出這些成績的中位數(shù).

解答 解:由莖葉圖得:
學(xué)習(xí)小組6名同學(xué)的英語口試成績從小到大為:
76,81,84,86,87,90,
∴這些成績的中位數(shù)為:$\frac{84+86}{2}=85$.
故答案為:85.

點評 本題考查中位數(shù)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意莖葉圖、中位數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知f(x)為一次函數(shù),g(x)為二次函數(shù),且f[g(x)]=g[f(x)].
(Ⅰ)求f(x)的解析式;
(Ⅱ)若y=g(x)與x軸及y=f(x)都相切,且g(0)=$\frac{1}{16}$,求g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,三四棱錐P-ABCD中,側(cè)面PAD⊥底面ABCD,側(cè)棱PA=PD=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2.
(1)求異面直線PB與CD所成角的余弦值;
(2)線段AD上是否存在Q,使得它到平面PCD的距離為$\frac{3}{2}$?若存在,求出$\frac{AQ}{QD}$的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在等差數(shù)列{an}中,2a7-a8=6且$a_2^2-{a_3}=1$.
(1)求數(shù)列{an}的通項公式;
(2)若a1,a2,a4成等比數(shù)列,求數(shù)列{an•2${\;}^{{a}_{n}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知全集U={1,2,3,4,5},集合A={3,4},B={1,2},則(∁UA)∩B等于( 。
A.{1,2}B.[1,3}C.{1,2,5}D.{1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,x≥0}\\{{a}^{x}-1,x<0}\end{array}\right.$,(x>0且a≠1)的圖象經(jīng)過點(-2,3).
(Ⅰ)求a的值,并在給出的直角坐標(biāo)系中畫出y=f(x)的圖象;
(Ⅱ)若f(x)在區(qū)間(m,m+1)上是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.經(jīng)過點A(-1,4)且在x軸上的截距為3的直線方程是( 。
A.x+y+3=0B.x-y+5=0C.x+y-3=0D.x+y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在直角梯形 ABCD 中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F(xiàn) 分別為
AB,AC 的中點,以A 為圓心,AD為半徑的圓弧DE中點為P (如圖所示).
若$\overrightarrow{AP}=λ\overrightarrow{ED}+μ\overrightarrow{AF}$,其中λ,μ∈R,則λ+μ的值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{3\sqrt{2}}}{4}$C.$\sqrt{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線(a-1)x-2y+1=0與直線x-ay+1=0平行,則a=( 。
A.-1或2B.-1C.2D.$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊答案