函數(shù)y=
2
x
的定義域是(-∞,0)∪[1,4),則其值域是
 
考點(diǎn):函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)遞減性,求解即可.
解答: 解:∵函數(shù)y=
2
x
在區(qū)間(-∞,0),[1,4)上都單調(diào)遞減,
∴當(dāng)x∈(-∞,0)時(shí),y∈(-∞,0),
當(dāng)x∈[1,4)時(shí),y∈[
1
2
,2),
故答案為:(-∞,0)∪[
1
2
,2),
點(diǎn)評(píng):本題考查了函數(shù)的性質(zhì)的運(yùn)用,求值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2|x+1|-|x-1|,求使f(x)≥2
2
的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=-x2+4x在區(qū)間[0,m]上的值域是[0,2],則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C上的動(dòng)點(diǎn)P到點(diǎn)M(2,
15
4
)和到y(tǒng)=
17
4
的距離相等,
(1)求曲線的解析式;
(2)設(shè)P是曲線C在區(qū)間[0,4]上任一點(diǎn),A、B兩點(diǎn)坐標(biāo)分別為A(0,0)、B(4,0),求
PA
PB
取值范圍;
(3)P(x0,y0)是曲線上任一點(diǎn),若曲線l與C有且僅有一個(gè)公共點(diǎn)恰為P,當(dāng)1≤x0≤6時(shí),求l在x軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<3},B={x|<a}.
(1)若A∩B=A,求實(shí)數(shù)a的取值范圍;
(2)若A∩B=B,求實(shí)數(shù)a的取值范圍;
(3)若∁RA是∁RB的真子集,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2+3(y-1)2=9的曲線關(guān)于( 。⿲(duì)稱.
A、x軸B、y軸
C、原點(diǎn)D、以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的通項(xiàng)公式為an=2009-7n,則使an<0的最小n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+2在[-5,5]上單調(diào),則實(shí)數(shù)a的取值范圍是(  )
A、(-∞,-5]
B、[5,+∞)
C、[-5,5]
D、(-∞,-5]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知二次函數(shù)f(x)滿足條件f(0)=1及f(x+1)-f(x)=2x,求f(x).
(2)若f(x)滿足關(guān)系式f(x)+2f(
1
x
)=3x,求f(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案