已知函數(shù),其中是實數(shù),設(shè)為該函數(shù)的圖象上的兩點,且.

⑴指出函數(shù)的單調(diào)區(qū)間;

⑵若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;

⑶若函數(shù)的圖象在點處的切線重合,求的取值范圍.

 

【答案】

(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)1;(3)

【解析】

試題分析:(1)根據(jù)基本初等函數(shù)的性質(zhì)知,分段函數(shù)時是二次函數(shù)的一部分,有兩個單調(diào)區(qū)間:增區(qū)間,減區(qū)間,時是對數(shù)函數(shù),只有一個單調(diào)增區(qū)間;(2)對函數(shù)圖象來講,它在某點處的切線斜率等于該函數(shù)在此點處的導(dǎo)數(shù),故有,由于兩點在軸的左邊,,因此有,顯然有,可以表示為關(guān)于的函數(shù),從而求出最小值(,應(yīng)用基本不等式即可得解)也可以直接湊配出基本不等式的形式,利用基本不等式);(3)這里我們首先分析所處范圍,結(jié)合圖象易知不可能在同一單調(diào)區(qū)間,只能是,那么我們可得出兩點處的切線方程分別為,,兩條切線相同,則有,于是可把表示為(或者)的函數(shù),把求匠范圍轉(zhuǎn)化為求函數(shù)的值域.

試題解析:(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為4分

(2)

當(dāng)時,因為,所以.8分

當(dāng)且僅當(dāng)時等號成立,

的最小值為1.10分

(3)當(dāng)時,,故

當(dāng)時,函數(shù)的圖象在點的切線方程為

當(dāng)時,函數(shù)切線方程為

兩切線重合的充要條件是13分

由①及

由①②得

,與都為減函數(shù).

16分

考點:(1)單調(diào)區(qū)間;(2)函數(shù)圖象的切線及基本不等式;(3)切線與函數(shù)的值域.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)理數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(—1,3)成中心對稱,求的值;

(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)文數(shù)學(xué)卷(解析版) 題型:解答題

已知函數(shù)(其中是實數(shù)常數(shù),

(1)若,函數(shù)的圖像關(guān)于點(—1,3)成中心對稱,求的值;

(2)若函數(shù)滿足條件(1),且對任意,總有,求的取值范圍;

(3)若b=0,函數(shù)是奇函數(shù),,,且對任意時,不等式恒成立,求負(fù)實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省浙北名校聯(lián)盟高三上學(xué)期期中聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中是實數(shù)).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,且有兩個極值點,求的取值范圍.

(其中是自然對數(shù)的底數(shù))

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇阜寧中學(xué)高三上學(xué)期第三次調(diào)研測試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù),其中是實數(shù),設(shè)為該函數(shù)的圖象上的兩點,且.

⑴指出函數(shù)的單調(diào)區(qū)間;

⑵若函數(shù)的圖象在點處的切線互相垂直,且,求的最小值;

⑶若函數(shù)的圖象在點處的切線重合,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊答案