【題目】平面內(nèi)有向量 =(1,7), =(5,1), =(2,1),點X為直線OP上的一個動點.
(1)當 取最小值時,求 的坐標;
(2)當點X滿足(1)的條件和結(jié)論時,求cos∠AXB的值.
【答案】
(1)解:設(shè) =(x,y),
∵點X在直線OP上,∴向量 與 共線.
又 =(2,1),∴x﹣2y=0,即x=2y.
∴ =(2y,y).又 = ﹣ , =(1,7),
∴ =(1﹣2y,7﹣y).
同樣 = ﹣ =(5﹣2y,1﹣y).
于是 =(1﹣2y)(5﹣2y)+(7﹣y)(1﹣y)=5y2﹣20y+12=5(y﹣2)2﹣8.
∴當y=2時, 有最小值﹣8,此時 =(4,2)
(2)解:當 =(4,2),即y=2時,有 =(﹣3,5), =(1,﹣1).
∴| |= ,| |= .
∴cos∠AXB= =﹣
【解析】(1)因為點X在直線OP上,向量 與 共線,可以得到關(guān)于 坐標的一個關(guān)系式,再根據(jù) 的最小值,求得 的坐標,(2)cos∠AXB是 與 夾角的余弦,利用數(shù)量積的知識易解決.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)存在極小值點,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 是半圓的直徑, 是半圓上除、外的一個動點, 垂直于半圓所在的平面, , , , .
(1)證明:平面平面;
(2)當三棱錐體積最大時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱柱中, 底面,底面為菱形, 為與交點,已知,.
(Ⅰ)求證: 平面;
(Ⅱ)求證: ∥平面;
(Ⅲ)設(shè)點在內(nèi)(含邊界),且 ,說明滿足條件的點的軌跡,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an},{bn}滿足a1=1,且an , an+1是函數(shù)f(x)=x2﹣bnx+2n的兩個零點,則b10等于( )
A.24
B.32
C.48
D.64
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,底面, ,、分別是棱、的中點.
(Ⅰ)求證:平面.
(Ⅱ)若線段上的點滿足平面平面,試確定點的位置,并說明理由.
(Ⅲ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列四個說法:
①f(x)為奇函數(shù); ②f(x)的一條對稱軸為x= ;
③f(x)的最小正周期為π; ④f(x)在區(qū)間[﹣ , ]上單調(diào)遞增;
⑤f(x)的圖象關(guān)于點(﹣ ,0)成中心對稱.
其中正確說法的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+ (a>1)
(1)證明:函數(shù)f(x)在(﹣1,+∞)上為增函數(shù);
(2)用反證法證明f(x)=0沒有負數(shù)根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com