剖析:兩圓外切,連心線長(zhǎng)等于兩圓半徑之和,兩圓內(nèi)切,連心線長(zhǎng)等于兩圓半徑之差,由此可得到動(dòng)圓圓心在運(yùn)動(dòng)中所應(yīng)滿足的幾何條件,然后將這個(gè)幾何條件坐標(biāo)化,即得到它的軌跡方程.
解法一:設(shè)動(dòng)圓圓心為P(x,y),因?yàn)閯?dòng)圓過(guò)定點(diǎn)A,所以|PA|即動(dòng)圓半徑.
當(dāng)動(dòng)圓P與⊙O外切時(shí),|PO|=|PA|+2;
當(dāng)動(dòng)圓P與⊙O內(nèi)切時(shí),|PO|=|PA|-2.
綜合這兩種情況,得||PO|-|PA||=2.
將此關(guān)系式坐標(biāo)化,得
|-|=2.
化簡(jiǎn)可得(x-2)2-=1.
解法二:由解法一可得動(dòng)點(diǎn)P滿足幾何關(guān)系
||OP|-|PA||=2,
即P點(diǎn)到兩定點(diǎn)O、A的距離差的絕對(duì)值為定值2,所以P點(diǎn)軌跡是以O(shè)、A為焦點(diǎn),2為實(shí)軸長(zhǎng)的雙曲線,中心在OA中點(diǎn)(2,0),實(shí)半軸長(zhǎng)a=1,半焦距c=2,虛半軸長(zhǎng)b==,所以軌跡方程為(x-2)2-=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2006年高考第一輪復(fù)習(xí)數(shù)學(xué):7.6 直線與圓的位置關(guān)系(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com