11.已知p:-2<a<0,?q:關于x的不等式x2+ax-2a2-3a+3<0的解集是空集,則?p是q的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.即不充分也不必要條件

分析 ?q:關于x的不等式x2+ax-2a2-3a+3<0的解集是空集,可得△<0,解得a范圍即可判斷出結論.

解答 解:¬q:關于x的不等式x2+ax-2a2-3a+3<0的解集是空集,
∴△=a2-4(-2a2-3a+3)<0,解得:$-2<a<\frac{2}{3}$.
又p:-2<a<0,∴p⇒¬q,反之不成立.
則¬p是q的必要不充分條件.
故選:B.

點評 本題考查了不等式的解法、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)f(x)=$\frac{1}{3}$x3+|x-a|(x∈R,a∈R).
(1)若函數(shù)f(x)在R上為增函數(shù),求a的取值范圍;
(2)已知函數(shù)f(x)在R上不單調.
①記f(x)在x∈[-1,1]上的最大值、最小值分別為M(a),m(a),求M(a)-m(a);
②設b∈R,若|f(x)+b|≤$\frac{2}{3}$對任意實數(shù)x∈[-1,1]都成立,求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.橢圓$\frac{{x}^{2}}{a+8}$+$\frac{{y}^{2}}{9}$=1的離心率e=$\frac{1}{2}$,則a的值為( 。
A.10或-$\frac{7}{2}$B.4或-$\frac{5}{4}$C.4或-$\frac{7}{2}$D.10或-$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設a∈R,a2-1+(a+1)i是純虛數(shù),其中i是虛數(shù)單位,則a=( 。
A.±1B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.一個盒子里裝有8個小球,其中有紅色小球4個,編號分別為1,2,3,4;白色小球4個,編號分別為2,3,4,5.從盒子中任取5個小球(假設取到任何一個小球的可能性相同).
(1)求取出的5個小球中,含有編號為3的小球的概率;
(2)在取出的5個小球中,紅色小球編號的最大值設為X,求隨機變量X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知數(shù)列{an}為等差數(shù)列,滿足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線上,O為直線AB外一點,記數(shù)列{an}的前n項和為Sn,則S2015的值為( 。
A.$\frac{2015}{2}$B.2015C.2016D.2013

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸入n的值為2,則輸出的結果是( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若x,y滿足約束條件$\left\{{\begin{array}{l}{\sqrt{3}x-y+\sqrt{3}≥0}\\{\sqrt{3}x+y-\sqrt{3}≤0}\\{y≥0}\end{array}}\right.$,則當$\frac{y+1}{x+3}$取最大值時,x+y的值為( 。
A.-1B.1C.$-\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知斜三棱柱ABC-A1B1C1中,底面ABC是等邊三角形,側面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求證:BC⊥AB1;
(Ⅱ)若AB=2,AB1=$\sqrt{6}$,求二面角C-AB1-C1(銳角)的余弦值.

查看答案和解析>>

同步練習冊答案