16.已知數(shù)列{an}為等差數(shù)列,滿足$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線上,O為直線AB外一點(diǎn),記數(shù)列{an}的前n項(xiàng)和為Sn,則S2015的值為( 。
A.$\frac{2015}{2}$B.2015C.2016D.2013

分析 利用向量共線定理可得:a3+a2013=1,再利用等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式即可得出.

解答 解:∵$\overrightarrow{OA}$=a3$\overrightarrow{OB}$+a2013$\overrightarrow{OC}$,其中A,B,C在一條直線上,
∴a3+a2013=1,
∴a1+a2015=a3+a2013=1,
∴S2015=$\frac{2015({a}_{1}+{a}_{2015})}{2}$=$\frac{2015}{2}$.
故選:A.

點(diǎn)評(píng) 本題考查了向量共線定理、等差數(shù)列的通項(xiàng)公式性質(zhì)及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知復(fù)數(shù)z=(m2-1)+(m+1)i,其中m∈R
(1)若z為純虛數(shù),求復(fù)數(shù)z;
(2)若z為實(shí)數(shù),求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=a+$\frac{a}{x^2}-\frac{5}{x}$,對(duì)?x∈(0,+∞),有f(x)≥0,則實(shí)數(shù)a的取值范圍是( 。
A.$[{\frac{5}{2},+∞})$B.$({\frac{5}{2},+∞})$C.$[{\frac{3}{2},+∞})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.圖中是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2米,水面寬4米,
水面下降0.42米后,水面寬為4.4米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知p:-2<a<0,?q:關(guān)于x的不等式x2+ax-2a2-3a+3<0的解集是空集,則?p是q的( 。
A.充要條件B.必要不充分條件
C.充分不必要條件D.即不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將4名同學(xué)隨機(jī)分成兩組參加數(shù)學(xué)、英語競賽,每組2人,則甲參加數(shù)學(xué)競賽且乙參加英語競賽的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在直角坐標(biāo)系xOy中,已知點(diǎn)A(2,0),B(1,1),C(-1,2),點(diǎn)P(x,y)在四邊形OABC的四邊圍成的區(qū)域內(nèi)(含邊界),則z=x-2y的最大值是(  )
A.5B.-5C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,∠ACB=90°,∠BAC=30°,BC=1,且三棱柱ABC-A1B1C1的體積為3,則三棱柱ABC-A1B1C1的外接球的表面積為( 。
A.16πB.12πC.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=a|x-2|+x.
(1)若函數(shù)f(x)有最大值,求a的取值范圍;
(2)若a=1,求不等式f(x)<|2x-3|的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案