已知△ABC內(nèi)角A,B,C,的對(duì)邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀是(  )
A、銳角三角形B、鈍角三角形
C、直角三角形D、不確定
考點(diǎn):三角形的形狀判斷,正弦定理
專題:解三角形
分析:依題意,利用正弦定理可知sin(B+C)=sinA=sin2A,易求sinA=1,從而可得答案.
解答: 解:△ABC中,∵bcosC+ccosB=asinA,
∴由正弦定理得:sinBcosC+sinCcosB=sin2A,
即sin(B+C)=sin(π-A)=sinA=sin2A,又sinA>0,
∴sinA=1,A∈(0,π),
∴A=
π
2

∴△ABC的形狀是直角三角形,
故選:C.
點(diǎn)評(píng):本題考查三角形形狀的判斷,著重考查正弦定理與誘導(dǎo)公式的應(yīng)用,考查轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x)且x∈[0,1]時(shí),f(x)=x,則方程f(x)=log3|x|的零點(diǎn)個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、6個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的參數(shù)方程為
x=2+cosθ
y=sinθ
(θ為參數(shù)).
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為(4,
π
3
),寫出曲線C的極坐標(biāo)方程和點(diǎn)P的直角坐標(biāo);
(Ⅱ)設(shè)點(diǎn)Q(x,y)是曲線C上的一個(gè)動(dòng)點(diǎn),求t=x+y的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
|x-a|
+x2,(常數(shù)a∈R).
(1)根據(jù)a的不同取值,討論f(x)的奇偶性,并說(shuō)明理由;
(2)設(shè)a=0,且t是正實(shí)數(shù),函數(shù)f(x)在區(qū)間[t,+∞) 上單調(diào)遞增,試根據(jù)函數(shù)單調(diào)性的定義求出t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=
2
x
與直線y=x-1及x=4所圍成的封閉圖形的面積為( 。
A、2ln2
B、2-ln2
C、4-ln2
D、4-2ln2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司計(jì)劃建造一個(gè)室內(nèi)面積為800m2的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1m寬的通道,沿前側(cè)內(nèi)墻保留3m寬的空地,當(dāng)矩形溫室的邊長(zhǎng)各為多少時(shí),蔬菜的種植面積最大?最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)直線l1:3x+4y-2=0與直線l2:2x+y+2=0的交點(diǎn)P,且垂直于直線x-4y-1=0.
(1)求直線l的方程;
(2)求直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S1=2,Sn+1=3Sn+2.
(Ⅰ)求通項(xiàng)公式an;
(Ⅱ)設(shè)bn=
an
S
2
n
,求證:b1+b2+…+bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|(a-1)x2+3x-2=0,x∈R}有且僅有兩個(gè)不同的子集,則實(shí)數(shù)a的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案