13.已知集合A={x|x≤3,x∈R},B={x|x-1≥0,x∈N},則A∩B=( 。
A.{0,1}B.{0,1,2}C.{2,3}D.{1,2,3}

分析 求出B中不等式的解集確定出B,找出A與B的交集即可.

解答 解:由B中不等式解得:x≥1,x∈N,即B={x|x≥1,且x∈N},
∵集合A={x|x≤3,x∈R},
∴A∩B={1,2,3},
故選:D.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x|x+m|-4,m∈R
(1)若g(x)=f(x)+4為奇函數(shù),求實數(shù)m的值;
(2)當m=-3時,求函數(shù)f(x)在x∈[2,4]上的值域;
(3)若f(x)<0對x∈(0,1]恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列命題中正確的個數(shù)是(  )
①過異面直線a,b外一點P有且只有一個平面與a,b都平行;
②異面直線a,b在平面α內(nèi)的射影相互垂直,則a⊥b;
③底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
④直線a,b分別在平面α,β內(nèi),且a⊥b,則α⊥β.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知冪函數(shù)f(x)=xα的圖象過點(8,4),則α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.關(guān)于x的方程x2-2tx+t2-1=0的兩個根中的一個根在(-2,0)內(nèi),另一個根在(1,2)內(nèi),則實數(shù)t的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$且f(x+2)=f(x).若方程f(x)-kx-2=0有三個不相等的實數(shù)根,則實數(shù)k的取值范圍是( 。
A.$(\frac{1}{3},1)$B.$(-\frac{1}{3},-\frac{1}{4})$C.$(\frac{1}{3},1)∪(-1,-\frac{1}{3})$D.$(-\frac{1}{3},-\frac{1}{4})∪(\frac{1}{4},\frac{1}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知定義在R上的函數(shù)f(x)=2|x-m|-1(m為實數(shù))為偶函數(shù),記a=f(2-3),b=f(3m),c=f(log0.53),則( 。
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=2{cos^2}x+sin({\frac{7π}{6}-2x})-1({x∈R})$.
(1)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)f(x)的圖象經(jīng)過點$({A,\frac{1}{2}})$,若b+c=2a,且$\overrightarrow{AB}•\overrightarrow{AC}$=6,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.過橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1的左焦點F1,作垂直于x軸的弦,求弦長.

查看答案和解析>>

同步練習冊答案