設函數(shù)f(x)=|sin(x+
π
3
)|(x∈R),求f(x)的單調遞增區(qū)間.
考點:正弦函數(shù)的單調性
專題:三角函數(shù)的圖像與性質
分析:根據(jù)函數(shù)y=|sinx|的增區(qū)間,令kπ≤x+
π
3
≤kπ+
π
2
,k∈z,求得x的范圍,可得f(x)的單調遞增區(qū)間.
解答: 解:令kπ≤x+
π
3
≤kπ+
π
2
,k∈z,求得kπ-
π
3
≤x≤kπ+
π
6

可得函數(shù)f(x)的增區(qū)間為[kπ-
π
3
,kπ+
π
6
],k∈z.
點評:本題主要考查函數(shù)y=|sinx|的增區(qū)間,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,且a2+b=3,過它的右焦點F分別作直線l1、l2,其中l(wèi)1交橢圓于P、Q兩點,l2交橢圓于M、N兩點,且l1⊥l2(如圖5所示).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)求四邊形MPNQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)其中A>0,ω>0,0<φ<
π
2
的圖象如圖所示.則函數(shù)y=f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在上的奇函數(shù),當x>0時,f(x)=x(1-x2)那么方程f(x)=0的實數(shù)跟個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=loga(ax2-x+3)在[2,4]上是增函數(shù),則實數(shù)a的取值范圍是( 。
A、a>1
B、0<a<1或a>1
C、
1
16
<a≤
1
8
D、
1
16
<a
1
8
或a>1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x),(x≠0)對于任意的x,y∈R且x,y≠0滿足f(xy)=f(x)+f(y).
(Ⅰ)求f(1),f(-1)的值;
(Ⅱ)判斷函數(shù)y=f(x),(x≠0)的奇偶性;
(Ⅲ)若函數(shù)y=f(x)在(0,+∞)上是增函數(shù),解不等式f(
1
6
x)+f(x-5)≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合M={(x,y)|x∈R,y∈R},定義映射f:N*→M滿足:對任意n∈N*都有f(n)=(xn,yn),f(n+1)=(-
1
2
xn
+
3
2
a,yn+
1
4n2-1
),且f(1)=(
3
2
a,1),其中常數(shù)a>0.
(Ⅰ)求yn的表達式;
(Ⅱ)判斷xn與a的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在1,2,3,4四個數(shù)中,任取兩個不同的數(shù),其和大于積的概率是( 。
A、
1
6
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算:
(1)(x3lnx)′;
(2)(exsinx)′.

查看答案和解析>>

同步練習冊答案