直線l過(guò)點(diǎn)P(4,3)且在x軸、y軸上的截距之比為1∶2,求直線l的方程.

解:設(shè)lx軸上的截距為a(a≠0),

lx軸上與在y軸上的截距之比為1∶2,

ly軸上的截距為2a,直線l的截距式方程為=1.

∵點(diǎn)P(4,3)在直線l上,

=1,a=.

∴直線l的方程為=1,

即所求直線l的方程為2xy-11=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過(guò)點(diǎn)P(-3,4)且在兩坐標(biāo)軸上截距之和為12,求:
(1)直線l的方程;
(2)點(diǎn)P(1,0)到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線l過(guò)點(diǎn)P(2,
3
)
且傾斜角為α,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=4cos(θ-
π
3
)
,直線l與曲線C相交于A,B兩點(diǎn);
(1)若|AB|≥
13
,求直線l的傾斜角α的取值范圍;
(2)求弦AB最短時(shí)直線l的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•海珠區(qū)一模)已知拋物線D的頂點(diǎn)是橢圓
x2
4
+
y2
3
=1的中心,焦點(diǎn)與該橢圓的右焦點(diǎn)重合.
(1)求拋物線D的方程;
(2)已知?jiǎng)又本l過(guò)點(diǎn)P(4,0),交拋物線D于A、B兩點(diǎn),坐標(biāo)原點(diǎn)O為PQ中點(diǎn),求證:∠AQP=∠BQP;
(3)是否存在垂直于x軸的直線m被以AP為直徑的圓所截得的弦長(zhǎng)恒為定值?如果存在,求出m的方程;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

M(2,-3),N(-3,-2)直線l過(guò)點(diǎn)P(1,1)且與線段MN相交,則l的斜率k的取值范圍為( 。
A、k≠-
1
5
B、-4≤k≤
3
4
C、k≤-4或k≥
3
4
D、-
3
4
≤k≤4

查看答案和解析>>

同步練習(xí)冊(cè)答案