在△ABC中,若acosA-bcosB=0,則三角形的形狀是(  )
分析:解法1:把由余弦定理解出的余弦表達(dá)式代入已知的等式化簡(jiǎn)可得:(a2-b2)c2=(a2-b2)(a2+b2),分①a2-b2=0和②a2-b2≠0兩種情況討論;
解法2:根據(jù)正弦定理把等式acosA=bcosB的邊換成角的正弦,再利用倍角公式化簡(jiǎn)整理得sin2A=sin2B,進(jìn)而推斷A=B,或A+B=90°答案可得.
解答:解:法1:∵cosA=
b2+c2-a2
2bc
,cosB=
a2+c2-b2
2ac
,
b2+c2-a2
2bc
•a=
a2+c2-b2
2ac
•b,
化簡(jiǎn)得:a2c2-a4=b2c2-b4,即(a2-b2)c2=(a2-b2)(a2+b2),
①若a2-b2=0時(shí),a=b,此時(shí)△ABC是等腰三角形;
②若a2-b2≠0,a2+b2=c2,此時(shí)△ABC是直角三角形,
所以△ABC是等腰三角形或直角三角形;
法2:根據(jù)正弦定理可知∵acosA=bcosB,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B,或2A+2B=180°即A+B=90°,
所以△ABC為等腰或直角三角形.
故選D
點(diǎn)評(píng):此題考查了三角形形狀的判斷,其中涉及的知識(shí)有:余弦定理,正弦定理,等腰、直角三角形的判定,以及二倍角的正弦函數(shù)公式,解法1利用了分類討論的思想,熟練掌握正弦、余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AC=1,AB=
3
,C=
3
,則BC=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•佛山二模)在△ABC中,若
AC
BC
=1
AB
BC
=-2
,則|
BC
|
=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•成都二模)在△ABC中,若
AC
BC
=1,
AB
BC
=-2,則|
BC
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AC=,AB=,∠C=,則BC等于(    )

A.5         B.        C.3    D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若AC=,AB=,∠C=,則△ABC的面積為(    )

A.    B.    C.3    D.

查看答案和解析>>

同步練習(xí)冊(cè)答案