PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75微克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.羅莊區(qū)2014年3月6日至15日每天的PM2.5監(jiān)測數(shù)據(jù)如莖葉圖所示.
(Ⅰ)小王在此期間也有兩天經(jīng)過此地,這兩天此地PM2.5監(jiān)測數(shù)據(jù)均未超標.請計算出這兩天空氣質量恰好有一天為一級的概率;
(Ⅱ)從所給10天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標的天數(shù),求ξ的分布列及期望.
考點:離散型隨機變量的期望與方差,莖葉圖
專題:概率與統(tǒng)計
分析:(Ⅰ)利用古典概型概率計算公式能求出這兩天空氣質量恰好有一天為一級的概率.
(Ⅱ)ξ的可能值為0,1,2,3,分別求出相應的概率,由此能求出ξ的分布列及期望.
解答: 解:(Ⅰ)記“這兩天此地PM2.5監(jiān)測數(shù)據(jù)均未超標且空氣質量恰好有一天為一級”為事件A,
P(A)=
C
1
2
C
1
4
C
2
6
=
8
15
.…(4分)
(Ⅱ)ξ的可能值為0,1,2,3,…(5分)
P(ξ=0)=
C
3
6
C
3
10
=
1
6
,P(ξ=1)=
C
2
6
C
1
4
C
3
10
=
1
2

P(ξ=2)=
C
1
6
C
2
4
C
3
10
=
3
10
,
P(ξ=3)=
C
3
4
C
3
10
=
1
30
,…(9分)
其分布列為:
ξ 0 1 2 3
P  
1
6
1
2
3
10
1
30
Eξ=
1
6
+1×
1
2
+2×
3
10
+3×
1
30
=
6
5
.…(12分)
點評:本題考查概率的求法,考查離散型隨機變量的分布列和數(shù)學期望的求法,解題時要認真審題,是中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是邊長為a的正方形,AB=AC,BC=
2
AB,A1A⊥平面ABC,BC∥B1C1,且BC=2B1C1
(1)求證:A1C1∥面ABC;
(2)求證:A1C1⊥平面B1BCC1;
(3)求三棱錐B-A1CC1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線l過點(0,1),并與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)相交于不同的A、B兩點,離心率為2,右焦點F(c,0)到右準線的距離等于
3
2

(1)求雙曲線方程;    
(2)求AB的長度;
(3)是否存在實數(shù)k,使得以線段AB為直徑的圓經(jīng)過坐標原點?若存在,求出k的值;若不存在,寫出理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=
3x2+7x-4
x2-3
的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓A過點P(
2
,
2
),且與圓B:(x+2)2+(y-2)2=r2(r>0)關于直線x-y+2=0對稱.
(1)求圓A和圓B方程;   
(2)求兩圓的公共弦長;
(3)過平面上一點Q(x0,y0)向圓A和圓B各引一條切線,切點分別為C、D,設
QD
QC
=2,求證:平面上存在一定點M使得Q到M的距離為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知B,C是兩個定點,|BC|=10,且△ABC的周長等于22,求頂點A滿足的一個軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a>0,a≠1,函數(shù)y=alg(x2-2x+3)有最大值,求函數(shù)f(x)=loga(3-2x-x2)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(2,2),向量
b
與向量
a
的夾角為
4
,且
a
b
=-2,
(1)求向量
b
;
(2)已知向量
b
與x軸垂直,向量
c
=(cosA,2cos2
C
2
),其中A、C是△ABC的內角,若三角形的三內角A、B、C依次成等差數(shù)列,試求|
b
+
c
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|
=3,
b
=(1,2).且向量
a
b
,求
a
的坐標.

查看答案和解析>>

同步練習冊答案