已知B,C是兩個定點(diǎn),|BC|=10,且△ABC的周長等于22,求頂點(diǎn)A滿足的一個軌跡方程.
考點(diǎn):軌跡方程
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:以BC所在直線為x軸,BC的中垂線為y軸建立直角坐標(biāo)系,設(shè)頂點(diǎn)A(x,y),由已知可得:|AB|+|AC|=12>10=|BC|,根據(jù)橢圓的定義可知:點(diǎn)A的軌跡是橢圓(去掉長軸的兩個端點(diǎn)).
解答: 解:以BC所在直線為x軸,BC的中垂線為y軸建立直角坐標(biāo)系,
設(shè)頂點(diǎn)A(x,y),由已知可得:|AB|+|AC|=12>10=|BC|,
根據(jù)橢圓的定義可知:點(diǎn)A的軌跡是橢圓(去掉長軸的兩個端點(diǎn)),其中a=6,c=5,b=
11

∴橢圓的標(biāo)準(zhǔn)方程為
x2
36
+
y2
11
=1
(y≠0).
點(diǎn)評:本題考查根據(jù)橢圓的定義,用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且S2=
3
2
a2-1,S3=
3
2
a3-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an于an+1之間插入n個數(shù),使這n+2個數(shù)組成公差為dn的等差數(shù)列,記數(shù)列{
1
dn
)的前n項(xiàng)和為Tn,求使得
8
5
Tn+
n
3n-1
40
27
成立的正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7名同學(xué)排隊(duì)照相.
(1)若排成一排照,甲、乙、丙三人必須相鄰,有多少種不同的排法?(用數(shù)字作答)
(2)若排成一排照,7人中有4名男生,3名女生,女生不能相鄰,有多少種不面的排法?(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程:
x=t
y=1+2t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程:ρ=2cosθ.
(Ⅰ)將直線l的參數(shù)方程化為普通方程,曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)判斷直線l和曲線C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物.PM2.5日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標(biāo).羅莊區(qū)2014年3月6日至15日每天的PM2.5監(jiān)測數(shù)據(jù)如莖葉圖所示.
(Ⅰ)小王在此期間也有兩天經(jīng)過此地,這兩天此地PM2.5監(jiān)測數(shù)據(jù)均未超標(biāo).請計(jì)算出這兩天空氣質(zhì)量恰好有一天為一級的概率;
(Ⅱ)從所給10天的數(shù)據(jù)中任意抽取三天數(shù)據(jù),記ξ表示抽到PM2.5監(jiān)測數(shù)據(jù)超標(biāo)的天數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3sin(
1
2
x-
π
4

(1)用五點(diǎn)法在給定的坐標(biāo)系中作出函數(shù)一個周期的圖象;
(2)求此函數(shù)的振幅、周期和初相;
(3)求此函數(shù)圖象的對稱軸方程、對稱中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)在x軸上,一條漸近線為y=
4
3
x,實(shí)軸長為12,
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)以雙曲線C的兩個頂點(diǎn)為焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn),求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A={x|x2+x-6=0},B={x||x|<3},C={x|x2-2x+1=0},求(A∩B)∪C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,B=C,2b=
3
a.
(1)求cosA的值;   
(2)若a=2,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案