已知拋物線Cy=x2-xcosq +2sinq -1,q 為參數(shù),求拋物線在x軸上兩截距的平方和的最小值和最大值.

答案:
解析:

設(shè)拋物線Cx軸上兩截距分別為x1,x2,則x1x2是方程x2-xcosq +2sinq -1=0的兩個(gè)根,由于x1x2均為實(shí)數(shù),所以D=cos2q -4(2sinq -1)≥0,即sin2q +8sinq -5≤0,又-1≤sinq ≤1,所以-1≤sinq ≤-4+,從而

  

      =cos2q -2(2sinq -1)

      =-(sinq +2)2+7,

  -1≤sinq-4.

  ∴ 當(dāng)sinq =-1時(shí)的最大值為6,

  當(dāng)sinq =-4時(shí)+的最小值=-(-4+2)2+7=4-18.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,已知拋物線C:y=3x2(x≥0)與直線x=a.直線x=b(其中0≤a≤b)及x軸圍成的曲邊梯形(陰影部分)的面積可以由公式S=b3-a3來計(jì)算,則如圖2,過拋物線C:y=3x2(x≥0)上一點(diǎn)A(點(diǎn)A在y軸和直線x=2之間)的切線為l,S1是拋物線y=3x2與切線l及直線y=0所圍成圖形的面積,S2是拋物線y=3x2與切線l及直線x=2所圍成圖形的面積,求面積s1+s2的最小值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=2x2上的點(diǎn)A(-1,2),直線l1過點(diǎn)A且與拋物線相切.直線l2:x=a(a>-1)交拋物線于點(diǎn)B,交直線l1于點(diǎn)D,記△ABD的面積為S1,拋物線和直線l1,l2所圍成的圖形面積為S2,則S1:S2=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y=ax2(a>0)的焦點(diǎn)到準(zhǔn)線的距離為
1
4
,且C上的兩點(diǎn)A(x1,y1),B(x2,y2)關(guān)于直線y=x+m對稱,并且x1x2=-
1
2
,那么m=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(大綱卷解析版) 題型:解答題

已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l.

(Ⅰ)求r;

(Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【2012高考真題全國卷理21】(本小題滿分12分)(注意:在試卷上作答無效

已知拋物線C:y=(x+1)2與圓M:(x-1)2+()2=r2(r>0)有一個(gè)公共點(diǎn),且在A處兩曲線的切線為同一直線l.

(Ⅰ)求r;

(Ⅱ)設(shè)m、n是異于l且與C及M都相切的兩條直線,m、n的交點(diǎn)為D,求D到l的距離.

查看答案和解析>>

同步練習(xí)冊答案