【題目】如圖,四邊形是等腰梯形, , ,在梯形中, ,且, 平面.

(1)求證:面;

(2)若二面角的大小為,求幾何體的體積.

【答案】(1)證明見(jiàn)解析;(2) .

【解析】試題分析:

(1)由題意結(jié)合幾何關(guān)系可證得,結(jié)合線面垂直的判斷定理有平面,,利用面面垂直的判斷定理有平面平面.

(2)結(jié)合(1)中的結(jié)論,以為原點(diǎn),建立空間直角坐標(biāo)系,由題意有可得,此幾何體由四棱錐和四棱錐組成,則.

試題解析:

1)證明:由已知, ,計(jì)算可得, ,則

,又平面,知,則平面

,則平面∴平面.

2)因?yàn)?/span>平面,又由(1)知,以為原點(diǎn),建立空間直角坐標(biāo)系,設(shè),則, 00, , ,

,設(shè)平面的法向量為,則,

,又平面的法向量為,所以

解得,即,此幾何體由四棱錐和四棱錐組成,

故幾何體體積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線的焦點(diǎn),斜率為的直線交拋物線于 兩點(diǎn),且.

1求該拋物線的方程;

2過(guò)點(diǎn)任意作互相垂直的兩條直線,分別交曲線于點(diǎn).設(shè)線段的中點(diǎn)分別為,求證:直線恒過(guò)一個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系;
(1)設(shè)M(x,y)是圓C上的動(dòng)點(diǎn),求m=3x+4y的取值范圍;
(2)求圓C的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2fa的a的取值范圍是(
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三條直線3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0圍成直角三角形,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與直線相切于點(diǎn)且經(jīng)過(guò)點(diǎn),求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】網(wǎng)上購(gòu)物逐步走進(jìn)大學(xué)生活,某大學(xué)學(xué)生宿舍4人積極參加網(wǎng)購(gòu),大家約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去哪家購(gòu)物,擲出點(diǎn)數(shù)為5或6的人去淘寶網(wǎng)購(gòu)物,擲出點(diǎn)數(shù)小于5的人去京東商場(chǎng)購(gòu)物,且參加者必須從淘寶和京東商城選擇一家購(gòu)物.
(1)求這4人中恰有1人去淘寶網(wǎng)購(gòu)物的概率;
(2)用ξ、η分別表示這4人中去淘寶網(wǎng)和京東商城購(gòu)物的人數(shù),記X=ξη,求隨機(jī)變量X的分布列與數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解湖南各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了n人,回答問(wèn)題“湖南省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表.

組號(hào)

分組

回答正確的人數(shù)

回答正確的人數(shù)
占本組的頻率

第1組

[15,25)

a

0.5

第2組

[25,35)

18

x

第3組

[35,45)

b

0.9

第4組

[45,55)

9

0.36

第5組

[55,65]

3

y


(1)分別求出a,b,x,y的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒(méi)有第3組人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,曲線 的極坐標(biāo)方程是 ,以極點(diǎn)為原點(diǎn) ,極軸為 軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系 中,曲線 的參數(shù)方程為: 為參數(shù)).
(1)求曲線 的直角坐標(biāo)方程與曲線 的普通方程;
(2)將曲線 經(jīng)過(guò)伸縮變換 后得到曲線 ,若 分別是曲線 和曲線 上的動(dòng)點(diǎn),求 的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案