設(shè)函數(shù)f(x)在(0,+∞)上是增函數(shù),a=f(2
3
2
),b=f(log2
3
2
)的大。ā 。
A、a>bB、a<b
C、a≥bD、a≤b
考點:函數(shù)單調(diào)性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運用指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性,可得2
3
2
>2,0<log2
3
2
<1.再由已知函數(shù)f(x)的單調(diào)性,即可得到.
解答: 解:由于2
3
2
>2,log21<log2
3
2
<log22,即0<log2
3
2
<1.
又函數(shù)f(x)在(0,+∞)上是增函數(shù),
則由2
3
2
>log2
3
2
,
即有a=f(2
3
2
)>b=f(log2
3
2
),
故選A.
點評:本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性的運用,比較大小,注意運用中間量比較,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m,n是不同的直線,α,β是不同的平面,則以下四個命題中錯誤的有
 

①若m⊥α,n⊥α,則m∥n;  
②若α⊥β,m∥α,則m⊥β;
③若m⊥α,m⊥n,則n∥α;
④若n⊥α,n⊥β,則α∥β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,前n項和滿足S5=10,S10=50,則S15=( 。
A、210B、250
C、310D、350

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(2,1)且傾斜角α滿足tanα=
4
3
的直線方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)在[0,+∞)為減函數(shù),滿足不等式f(3-2a)<f(a-3)的a的集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個內(nèi)角A,B,C的對邊,
-2b-c
a
=
cosC
cosA

(1)求角A的大小;
(2)若△ABC的面積S=
3
,求△ABC周長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)公差不為0的等差數(shù)列{an}的首項為1,且a2,a5,a14構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=
16
(1+an)(5+an)
,n為奇數(shù)
15×22n-3,n為偶數(shù)
,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)Z滿足(1+i)Z=|1-i|,是Z的虛部為( 。
A、-
2
2
i
B、
2
2
i
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱柱的底面是邊長為4的正三角形,側(cè)棱長為3,一條側(cè)棱與底面相鄰兩邊都成60°角,求此棱柱的側(cè)面積與體積.

查看答案和解析>>

同步練習(xí)冊答案