20.用黑白兩種顏色隨機(jī)地染如圖所示表格中6個(gè)格子,每個(gè)格子染一種顏色,則有64個(gè)不同的染色方法,出現(xiàn)從左至右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子的概率為$\frac{5}{16}$.

分析 用黑白兩種顏色隨機(jī)地染如圖所示表格中6個(gè)格子,每個(gè)格子都有2種染色方法,由此利用乘法原理能求出不同的染色方法種數(shù),再利用分類討論方法求出出現(xiàn)從左至右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子,包含的基本事件個(gè)數(shù),由此能求出不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子的概率.

解答 解:用黑白兩種顏色隨機(jī)地染如圖所示表格中6個(gè)格子,
每個(gè)格子染一種顏色,則有:26=64個(gè)不同的染色方法,
出現(xiàn)從左至右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子,
包含的基本事件有:全染黑色,有1種方法,
第一個(gè)格子染黑色,另外五個(gè)格子中有1個(gè)格染白色,剩余的都染黑色,有5種方法,
第一個(gè)格子染黑色,另外五個(gè)格子中有2個(gè)格染白色,剩余的都染黑色,有8種方法,
第一個(gè)格子染黑色,另外五個(gè)格子中有3個(gè)格染白色,剩余的都染黑色,有6種方法,
∴出現(xiàn)從左至右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子,
包含的基本事件有:1+5+8+6=20種,
∴出現(xiàn)從左至右數(shù),不管數(shù)到哪個(gè)格子,總有黑色格子不少于白色格子的概率為:
p=$\frac{20}{64}$=$\frac{5}{16}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分類討論思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)$f(x)=\frac{x}{e^x}$,若不等式f(x)-a(x+1)>0的解集中有且僅有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.$[{\frac{1}{e^2},\frac{1}{e}}]$B.$[{\frac{1}{e^2},\frac{1}{e}})$C.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}}]$D.$[{\frac{2}{{3{e^2}}},\frac{1}{2e}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=xex-ax2(a∈R).
(1)若函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$是奇函數(shù),求實(shí)數(shù)a的值;
(2)若對(duì)任意的實(shí)數(shù)a,函數(shù)h(x)=kx+b(k,b為實(shí)常數(shù))的圖象與函數(shù)f(x)的圖象總相切于一個(gè)定點(diǎn).
①求k與b的值;
②對(duì)(0,+∞)上的任意實(shí)數(shù)x1,x2,都有[f(x1)-h(x1)][f(x2)-h(x2)]>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若函數(shù)f(x)=2sin2ωx+sin2ωx-1(x∈R)滿足f(α)=-$\sqrt{2}$,f(β)=0且|α-β|的最小值為$\frac{3π}{4}$,則正數(shù)ω的值為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-a|
(I) 若對(duì)x∈[0,4]不等式f(x)≤3恒成立,求實(shí)數(shù)a的取值范圍;
(II) 當(dāng)a=2時(shí),若f(x)+f(x+5)≥m對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.給定兩個(gè)命題p,q,“¬(p∨q)為假”是“p∧q為真”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知${({\frac{5}{x}-\sqrt{x}})^n}$展開式中,只有第3項(xiàng)的二項(xiàng)式系數(shù)最大,且展開式中含x2項(xiàng)的系數(shù)為a,則$\int_1^{2a}{\frac{{{x^2}+1}}{x}}dx$=$\frac{3}{2}$+ln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{x≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-3x的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖△ABC和△ABD均為等腰直角三角形,AD⊥BD,AC⊥BC,平面ABC⊥平面ABD,EC⊥平面ABC,EC=1,$AD=2\sqrt{2}$.
(1)證明:DE⊥AB;
(2)求二面角D-BE-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案