9.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{x≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=y-3x的最大值是4.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.

解答 解:由z=y-3x,得y=3x+z,
作出變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-2≥0}\\{2x+y-4≤0}\\{x≥0}\end{array}\right.$對應(yīng)的可行域,
平移直線y=3x+z,
由平移可知當(dāng)直線y=3x+z經(jīng)過點(diǎn)A時(shí),
直線y=3x+z的截距最大,此時(shí)z取得最大值,
由$\left\{\begin{array}{l}{x=0}\\{2x+y-4=0}\end{array}\right.$,解得A(0,4)
代入z=y-3x,得z=4-0=4,
即z=y-3x的最大值為4.
故答案為:4.

點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{f({x+2}),x<3}\\{{{({\frac{1}{2}})}^x},x≥3}\end{array}}$,則f(-4)=( 。
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.用黑白兩種顏色隨機(jī)地染如圖所示表格中6個格子,每個格子染一種顏色,則有64個不同的染色方法,出現(xiàn)從左至右數(shù),不管數(shù)到哪個格子,總有黑色格子不少于白色格子的概率為$\frac{5}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若f(x)在x=1處取得極值,討論函數(shù)f(x)的單調(diào)性;
(II)當(dāng)a=1時(shí),設(shè)函數(shù)φ(x)=f(x)-x2有兩個零點(diǎn)x1,x2
(i)求b的取值范圍;
(ii)證明:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.${(2x-\frac{1}{2x})^{10}}$的常數(shù)項(xiàng)為( 。
A.-252B.252C.-210D.210

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)的圖象如圖,則f(x)的解析式為( 。
A.f(x)=eln|x+1|B.f(x)=eln|x-1|C.f(x)=e|ln(x+1)|D.f(x)=e|ln(x-1)|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,角A、B、C的對邊分別為a、b、c,已知a+b=$\sqrt{3}$bsinC+ccosB.
(Ⅰ)求C;
(Ⅱ)若c=2$\sqrt{7}$,△ABC的面積為3$\sqrt{3}$,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M、N分別為SB、SC中點(diǎn),過MN作平面MNPQ分別與線段CD、AB相交于點(diǎn)P、Q.
(Ⅰ)在圖中作出平面MNPQ使面MNPQ‖面SAD(不要求證明);
( II)若$|{\overrightarrow{AB}}|=4$,在(Ⅰ)的條件下求多面體MNCBPQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=|x-1|.
(Ⅰ)解不等式:f(x)+f(x-1)≤2,;
(Ⅱ)若a>0,求證:f(ax)-af(x)≤f(a).

查看答案和解析>>

同步練習(xí)冊答案