10.甲用1000元人民幣購買了一支股票,隨即他將這支股票賣給乙,甲獲利10%,而后乙又將這支股票返賣給甲,但乙損失了10%,最后甲按乙賣給甲的價格九折將這支股票賣給了乙,在上述股票交易中( 。
A.甲剛好盈虧平衡B.甲盈利1元C.甲盈利9元D.甲虧本1.1元

分析 把甲的付出記為“-”,收入記為“+”,分布計算每一次甲的收入,合并后得答案.

解答 解:依題意,甲的成本為1000元.
第一次交易,甲收入:(1+10%)×1000=1100元;
第二次交易,甲收入:-(1-10%)×1000=-990元;
第三次交易,甲收入:990×0.9=891元.
甲的實際收入為:-1000+1100-990+891=1元.
故選:B.

點評 本題考查簡單的數(shù)學(xué)建模思想方法,考查有理指數(shù)冪的化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)等比數(shù)列{an}的前n項和記為Sn,若S4=2,S8=6,則S12等于( 。
A.8B.10C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知A1、A2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右頂點,點P為橢圓C上一點(與A1、A2不重合),若直線PA1與PA2的斜率乘積是-$\frac{3}{4}$,則橢圓C的離心率為( 。
A.$\frac{1}{4}$B.$\sqrt{3}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列否定不正確的是(  )
A.“?x∈R,x2>0””的否定是“?x0∈R,x02≤0”
B.“?x0∈R,x02<0”的否定是“?x∈R,x2<0”
C.“?θ∈R,sinθ≤1”的否定是?θ0∈R,sinθ0>1
D.“?θ0∈R,sinθ0+cosθ0<1”的否定是“?θ∈R,sinθ+cosθ≥1”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的兩條漸近線的夾角為$\frac{π}{3}$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在對16和12求最大公約數(shù)時,整個操作如下:16-12=4,12-4=8,8-4=4,由此可以看出12與16的最大公約數(shù)是(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.雙曲線$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{7}$=1的焦距為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.(1)$\frac{3(1+i)^{2}}{i-1}$=-3-3i;
(2)($\frac{1+i}{1-i}$)6+$\frac{\sqrt{2}+\sqrt{3}i}{\sqrt{3}-\sqrt{2}i}$=-1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.我們將b-a稱為集合M={x|a≤x≤b}的“長度”,若集合M={x|m≤x≤m+$\frac{2}{3}$},N={x|n-0.5≤x≤n},且集合M和集合N都是集合{x|0≤x≤1}的子集,則集合M∩N的“長度”的最小值是$\frac{1}{6}$.

查看答案和解析>>

同步練習(xí)冊答案