5.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的兩條漸近線的夾角為$\frac{π}{3}$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}}{3}$B.$\frac{2\sqrt{3}}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{3}{5}$

分析 雙曲線雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的漸近線方程是y=$±\frac{\sqrt{2}}{a}x$,由題設(shè)條件可知$\frac{\sqrt{2}}{a}$=$\frac{\sqrt{3}}{3}$,從而求出a的值,進而求出雙曲線的離心率.

解答 解:∵雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的漸近線方程是y=$±\frac{\sqrt{2}}{a}x$
∴由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{2}$=1(a>$\sqrt{2}$)的兩條漸近線的夾角為$\frac{π}{3}$,
可知$\frac{\sqrt{2}}{a}$=$\frac{\sqrt{3}}{3}$,
∴a2=6,c2=8,∴雙曲線的離心率為$\frac{2\sqrt{3}}{3}$,
故選B.

點評 本題考查雙曲線的性質(zhì)及其應(yīng)用,解題的關(guān)鍵是由漸近線的夾角求出a.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時,f(x)=2x-1,則方程f(x)=log6(x-3)在(0,+∞)解的個數(shù)是( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|3≤x<7},B={x|2<x<10},求∁R(A∪B)、∁R(A∩B)、(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=1-ax+lnx,(x>0),函數(shù)g(x)滿足g(x)=x-1,(x∈R).
(1)若函數(shù)f(x)在x=1時存在極值,求a的值;
(2)在(1)的條件下,當(dāng)x>1時,blnx<$\frac{f(x)}{g(x)}$,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F1、F2是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的兩個焦點,P為橢圓C上的一點,且$\overline{P{F}_{1}}$⊥$\overline{P{F}_{2}}$.若△PF1F2的面積為9,則b=(  )
A.3B.6C.3$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲用1000元人民幣購買了一支股票,隨即他將這支股票賣給乙,甲獲利10%,而后乙又將這支股票返賣給甲,但乙損失了10%,最后甲按乙賣給甲的價格九折將這支股票賣給了乙,在上述股票交易中( 。
A.甲剛好盈虧平衡B.甲盈利1元C.甲盈利9元D.甲虧本1.1元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△OAB中,C為邊AB上任意一點,D為OC上靠近O的一個三等分點,若$\overline{OD}$=λ$\overline{OA}$+μ$\overline{OB}$,則λ+μ的值為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某工廠一年中第十二個月的產(chǎn)量是第一個月產(chǎn)量的a倍,那么該工廠這一年的月平均增長率是(  )
A.$\frac{a}{11}$B.$\frac{a}{12}$C.$\root{12}{a}$-1D.$\root{11}{a}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.集合{1,2,3,…,2015,2016}的子集個數(shù)為22016

查看答案和解析>>

同步練習(xí)冊答案