【題目】已知函數(shù)f(x)=sin2x+2 sinxcosx+sin(x+ )sin(x﹣ ),x∈R.
(1)求f(x)的最小正周期和單調(diào)增區(qū)間;
(2)若x=x0(0≤x0≤ )為f(x)的一個(gè)零點(diǎn),求cos2x0的值.
【答案】
(1)解: f(x)=sin2x+ sin2x+ (sin2x﹣cos2x)= + sin2x﹣ cos2x,
= sin2x﹣cos2x+ =2sin(2x﹣ )+ ,
∴f(x)的周期為π,由﹣ +2kπ≤2x﹣ ≤ +2kπ得:﹣ +kπ≤x≤ +kπ,k∈Z.
∴f(x)的單調(diào)遞增區(qū)間為[﹣ +kπ, +kπ]k∈Z.
(2)解:由f(x0)=2sin(2x0﹣ )+ =0,得sin(2x0﹣ )=﹣ <0,
又由0≤x0≤ 得﹣ ≤2x0﹣ ≤ ,
∴﹣ ≤2x0﹣ ≤0,故cos(2x0﹣ )= ,
此時(shí)cos2x0=cos[(2x0﹣ )+ ]=cos(2x0﹣ )cos ﹣sin(2x0﹣ )sin = × ﹣(﹣ )× =
【解析】(1)利用三角恒等變換可求得f(x)=2sin(2x﹣ )+ ,利用正弦函數(shù)的周期性與單調(diào)性即可求得f(x)的最小正周期和單調(diào)增區(qū)間;(2)由f(x0)=2sin(2x0﹣ )+ =0,得sin(2x0﹣ )=﹣ <0,0≤x0≤ ,可得﹣ ≤2x0﹣ ≤0,于是可求得cos(2x0﹣ )的值,利用兩角和的余弦即可求得答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把復(fù)數(shù)z的共軛復(fù)數(shù)記作 ,i為虛數(shù)單位,若z=1+i.
(1)求復(fù)數(shù)(1+z) ;
(2)求(1+ )z2的模.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AB⊥AD,AD∥BC,AP=AB=AD=1.
(Ⅰ)若直線(xiàn)PB與CD所成角的大小為,求BC的長(zhǎng);
(Ⅱ)求二面角B-PD-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點(diǎn)在平面上的射影恰好是線(xiàn)段的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)若直線(xiàn)與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在實(shí)數(shù)x,使得f(x)≤|x|+a,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿(mǎn)分14分)已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線(xiàn)與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C對(duì)邊的邊長(zhǎng)分別是a,b,c.已知c=4,C= .
(1)若△ABC的面積等于4 ,求a,b;
(2)若sinB=2sinA,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+2mx+3m+4,
(1)若f(x)在(﹣∞,1]上單調(diào)遞減,求m的取值范圍;
(2)求f(x)在[0,2]上的最大值g(m).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線(xiàn)y=f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com