A. | $?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+2}}=2{a_{{n_0}+1}}$ | |
B. | ?n∈N*,an•an+1≤an+2 | |
C. | ?n∈N*,Sn<an+1 | |
D. | $?{n_0}∈N*,{a_{n_0}}+{a_{{n_0}+3}}={a_{{n_0}+1}}+{a_{{n_0}+2}}$ |
分析 由題意可得an和Sn,逐個選項驗證可得.
解答 解:由題意可得${a_n}={2^{n-1}},{S_n}=\frac{{1({1-{2^n}})}}{1-2}={2^n}-1$,
A.${a_{n_0}}+{a_{{n_0}+2}}={2^{{n_0}-1}}+{2^{{n_0}+1}},2{a_{{n_0}+1}}={2^{{n_0}+1}}$,${2^{{n_0}-1}}+{2^{{n_0}+1}}={2^{{n_0}+1}}⇒{2^{{n_0}-1}}=0⇒{n_0}∈∅$,∴A錯;
B.${a_n}•{a_{n+1}}={2^{n-1}}•{2^n}={2^{2n-1}},{a_{n+2}}={2^{n+1}}$,構(gòu)造函數(shù)f(x)=2x,易知f(x)在R上單調(diào)遞增,
當(dāng)x=2時,f(2x-1)=f(x+1),∴R上不能保證f(2x-1)≤f(x+1)恒成立,∴B錯;
C.Sn<an+1恒成立即2n-1<2n恒成立,顯然C正確.
同A的解析可得D錯誤.
故選:C
點評 本題考查等比數(shù)列的求和公式,涉及函數(shù)的單調(diào)性和恒成立,屬中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,2] | B. | [-$\frac{1}{2}$,2] | C. | [-1,2] | D. | [-$\frac{1}{2}$,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4k+1,4k+3](k∈Z) | B. | [2k+1,2k+3](k∈Z) | C. | [2k+1,2k+2](k∈Z) | D. | [2k-1,2k+2](k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | k>2? | B. | k>3? | C. | k>4? | D. | k>5? |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -$\frac{5}{4}$ | C. | -1 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 16 | C. | 15 | D. | 14 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com