A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 把給出的遞推式變形得到$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$然后利用累加法進行化簡,再由遞推式求出第2017項的范圍后可得m的整數(shù)部分.
解答 解:由an+1=an(an+1)(n∈N*)得出:$\frac{1}{{a}_{n+1}}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n}+1}$,
所以$\frac{1}{{a}_{n}+1}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
所以m=$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2017}+1}$
=($\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2}}$)+($\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$)+($\frac{1}{{a}_{3}}$-$\frac{1}{{a}_{4}}$)+…+($\frac{1}{{a}_{2017}}$-$\frac{1}{{a}_{2018}}$)
=$\frac{1}{{a}_{1}}$-$\frac{1}{{a}_{2018}}$
=3-$\frac{1}{{a}_{2018}}$.
因為an+1=an(an+1)(n∈N*),
所以an+1-an=an2≥0,
而a2=a12+a1=$\frac{1}{9}$+$\frac{1}{3}$=$\frac{4}{9}$,a3=a22+a2=$\frac{16}{81}$+$\frac{4}{9}$=$\frac{52}{81}$<1.
所以1>a2018≥a2017≥…≥a3,則$\frac{1}{{a}_{2018}}$>1.
由m=3-$\frac{1}{{a}_{2018}}$知0<m<2,所以m的整數(shù)部分為2.
故選:C.
點評 本題考查了數(shù)列的概念及簡單表示法,考查了累加法求得數(shù)列的和,解答此題的關(guān)鍵是由遞推式得到列項公式,是在中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(0,1) | B. | (-∞,-1)∪(1,+∞) | C. | (-1,1) | D. | (-1,0)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,1] | C. | (3,+∞) | D. | (-∞,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0)∪[2,3) | B. | (-∞,0]∪(2,3) | C. | [0,2) | D. | [0,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{12}$個單位 | D. | 向右平移$\frac{π}{12}$個單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥e4+2e2 | B. | a>e2+2e | C. | a≥e2+2e | D. | a>e4+2e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com