3.已知函數(shù)y=f(x)的圖象如圖所示,則函數(shù)y=f(6x)的零點個數(shù)為( 。
A.0B.1C.2D.3

分析 利用函數(shù)的圖象,結(jié)合函數(shù)的定義域,判斷零點個數(shù)即可.

解答 解:函數(shù)y=f(6x),可知6x>0,由函數(shù)的圖象
可知函數(shù)y=f(6x)的零點個數(shù)為:2.
故選:C.

點評 本題考查函數(shù)的圖象的應(yīng)用,函數(shù)的零點的個數(shù)的判斷,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)$f(x)=1-\frac{3}{x+2}$,x∈[3,5].
(1)利用定義證明函數(shù)f(x)單調(diào)遞增;
(2)求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=alnx-x+1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意x∈(0,+∞),都有f(x)≤0,求實數(shù)a的取值范圍;
(Ⅲ)證明${({1+\frac{1}{n}})^n}<e<{({1+\frac{1}{n}})^{n+1}}$(其中n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某校3名教師和3名學(xué)生共6人去北京參加學(xué)習(xí)方法研討會,須乘坐兩輛車,每車坐3人,則恰有兩名教師在同一車上的概率( 。
A.$\frac{1}{9}$B.$\frac{2}{3}$C.$\frac{9}{20}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}1-{2^x},x≤0\\{log_2}x,x>0\end{array}\right.$,則f(f(-1))=( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在R上的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=2x-1,則滿足$f(x)<\frac{3}{2}x$的實數(shù)x的取值范圍為(-∞,-2)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$f(x)=\sqrt{x+1}+{log_{2016}}(2-x)$的定義域為( 。
A.(-2,1]B.[1,2]C.[-1,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=2x+2-x
(1)用定義法證明:函數(shù)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)若x∈[-1,2],求函數(shù)g(x)=2x[f(x)-2]-3的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知數(shù)列{an}滿足a1=$\frac{1}{3}$,且an+1=an(an+1)(n∈N*),則m=$\frac{1}{{a}_{1}+1}$+$\frac{1}{{a}_{2}+1}$+…+$\frac{1}{{a}_{2017}+1}$的整數(shù)部分是( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案