9.計算:
(1)$\frac{1}{\sqrt{0.04}}$+($\frac{1}{\sqrt{27}}$)${\;}^{\frac{1}{3}}$+($\sqrt{2}$+1)-1-2${\;}^{\frac{1}{2}}$+(-2)0;
(2)$\frac{2}{5}$lg32+lg50+$\sqrt{(lg3)^{2}-lg9+1}$-lg$\frac{2}{3}$.

分析 (1)利用分數(shù)指數(shù)冪性質、運算法則求解.
(2)利用對數(shù)性質、運算法則求解.

解答 解:(1)$\frac{1}{{\sqrt{0.04}}}+{({\frac{1}{27}})^{-\frac{1}{3}}}+{({\sqrt{2}+1})^{-1}}-{2^{\frac{1}{2}}}+{({-2})^0}$
=$\frac{1}{\frac{1}{5}}$+(3-3)${\;}^{-\frac{1}{3}}$+$\frac{1}{\sqrt{2}+1}$-$\sqrt{2}+1$
=5+3+$\sqrt{2}-1$-$\sqrt{2}+1$
=8.
(2)$\frac{2}{5}lg32+lg50+\sqrt{{{({lg3})}^2}-lg9+1}-lg\frac{2}{3}$
=2lg2+lg5+1+$\sqrt{(lg3-1)^{2}}$-lg2+lg3
=lg2+lg5+1+1-lg3+lg3
=3.

點評 本題考查指數(shù)式、對數(shù)式化簡求值,是基礎題,解題時要認真審題,注意對數(shù)、指數(shù)性質、運算法則的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.如果一個點是一個指數(shù)函數(shù)的圖象與一個對數(shù)函數(shù)的圖象的公共點,那么稱這個點為“好點”,在下面的六個點M(1,1)、N(1,2)、P(1,3)、Q(2,1)、R(2,2)、T(2,3)中,“好點”的個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{|x-1|}-1,x≥0}\\{{x}^{2}+2x+1,x<0}\end{array}\right.$,若f2(x)-(3a-1)f(x)+a2=0有5個不同的實數(shù)解,則a=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在△ABC中,a=2,b=$\sqrt{2}$,A=45°,則B等于( 。
A.45°B.30°C.60°D.30°或150°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設命題p:“?x>1,x2≥x,則其否定非p為( 。
A.?x>1,x2≤xB.$?{x}_{0}>1,{x}_{0}^{2}>{x}_{0}$
C.$?{x}_{0}≤1,{x}_{0}^{2}≤{x}_{0}$D.$?{x}_{0}>1,{x}_{0}^{2}<{x}_{0}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知(x,y)滿足不等式組$\left\{\begin{array}{l}x+y-2≥0\\ x-y≥0\\ 2x-y-4≤0\end{array}\right.$則$\frac{y}{x+1}$的取值范圍是$[0,\frac{4}{5}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.函數(shù)f(x)=1n(2-x)-$\frac{1}{x}$的單調區(qū)間是函數(shù)f(x)在(-∞,-2),(1,2)上單調遞增,在(-2,0),(0,1)上單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知命題A是C的充分條件,B是C的充要條件,B是D的必要條件,試問命題A是B的什么條件,D是C的什么條件.

查看答案和解析>>

同步練習冊答案