15.觀察下列算式:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)右邊含有“2017”這個數(shù),則:n=45.

分析 可得規(guī)律:第n個式子的左邊是n3,右邊是n個連續(xù)奇數(shù)的和,設(shè)第n個式子的第一個數(shù)為an,累加可得an,計算可得a45=1981,a46=2071,可知2015在第45 個式子

解答 解:由題意可得第n個式子的左邊是n3,右邊是n個連續(xù)奇數(shù)的和,
設(shè)第n個式子的第一個數(shù)為an,則有a2-a1=3-1=2,
a3-a2=7-3=4,…an-an-1=2(n-1),
以上(n-1)個式子相加可得an-a1=$\frac{(n-1)[2+2(n-1)]}{2}$,
故an=n2-n+1,可得a45=1981,a46=2071,
故可知2017在第45個式子,
故答案為:45

點評 本題考查了新定義的應(yīng)用,歸納推理,等差數(shù)列的前n項和公式,難點在于發(fā)現(xiàn)其中的規(guī)律,考查觀察、分析、歸納能力

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

5.已知數(shù)列{an}滿足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,an=$\left\{\begin{array}{l}{\frac{2}{3},n=1}\\{\frac{1}{{3}^{n}},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.下列是我國2010年至2016年生活垃圾無害化處理量(單位:億噸)的折線圖.

(1)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,求y關(guān)于t的回歸方程(系數(shù)精確到0.01);
(2)預(yù)測2018年我國生活垃圾無害化處理量.
附注:參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘法估計公式分別為:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示的程序框圖,運行后輸出的結(jié)果為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.是否存在a,b,c使等式($\frac{1}{n}$)2+($\frac{2}{n}$)2+($\frac{3}{n}$)2+…+($\frac{n}{n}$)2=$\frac{a{n}^{2}+bn+c}{n}$對一切n∈N*都成立若不存在,說明理由;若存在,用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知:$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}},\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}},\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}…$,$\sqrt{8+\frac{a}{t}}=8\sqrt{\frac{a}{t}},a,t∈{R_+}$,類比上述等式,則:a+t=(  )
A.70B.68C.69D.71

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.數(shù)列{an}滿足${a_{n+1}}=\left\{{\begin{array}{l}{2{a_n}}\\{{a_n}-1}\end{array}}\right.\begin{array}{l}{(0≤{a_n}≤1)}\\{({a_n}>1)}\end{array}$,且${a_1}=\frac{6}{7}$,則a2017=$\frac{12}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知離心率為$\frac{1}{2}$的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點分別為F1,F(xiàn)2,A是橢圓C的左頂點,且滿足|AF1|+|AF2|=4.
(1)求橢圓C的標準方程;
(2)若M,N是橢圓C上異于A點的兩個動點,且滿足AM⊥AN,問直線MN是否恒過定點?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.圖中,小方格是邊長為1的正方形,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.8-$\frac{4}{3}$πB.8-πC.8-$\frac{2}{3}$πD.8-$\frac{1}{3}$π

查看答案和解析>>

同步練習冊答案