(本題滿分12分)
已知平面//平面,AB、CD是夾在、間的兩條線段,A、C在內(nèi),B、D在內(nèi),點E、F分別在AB、CD上,且,求證:.

證明:連BF延長交面于M,連AM,CM,
,EF//AM

解析試題分析:連BF延長交面于M,連AM,CM
因為BM,CD共面,
所以,,故
由此得,故EF//AM
因為,所以
考點:線面平行的判定定理
點評:本題還可過C作AB平行線來證明

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在四棱錐中,,平面,的中點,

(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點,求證:平面平面;
(Ⅲ)求二面角的大小。.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,四棱錐P--ABCD中,PB底面ABCD.底面ABCD為直角梯形,AD∥BC,AB=AD=PB=3,BC=6.點E在棱PA上,且PE=2EA.

(1)求異面直線PA與CD所成的角;
(2)求證:PC∥平面EBD;
(3)求二面角A—BE--D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
如圖,在四面體PABC中,PA=PB,CA=CB,D、E、F、G分別是PA,AC、CB、BP的中點.

(1)求證:D、E、F、G四點共面;
(2)求證:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面體PABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)如圖,在四棱錐中,底面是正方形,側棱底面,的中點,作于點

(1)證明:平面.
(2)證明:平面.
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在長方體 中點.

(1)求證:;
(2)在棱上是否存在一點,使得平面若存在,求的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點E的棱AB上移動。
(I)證明:D1EA1D;
(II)AE等于何值時,二面角D1-EC-D的大小為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖:在三棱錐中,已知點、分別為棱、的中點.
(1)求證:∥平面
(2)若,,求證:平面⊥平面

查看答案和解析>>

同步練習冊答案