分析 (Ⅰ)由已知及正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式化簡可得sinA=2sinAcosB.結(jié)合sinA≠0.可求cosB,利用特殊角的三角函數(shù)值即可求得B的值.
(Ⅱ)由已知及余弦定理得a2-2a-5=0,解得a的值,進(jìn)而利用三角形面積公式即可得解.
解答 (本題滿分為12分)
解:(Ⅰ)由已知及正弦定理得sinBcosC=(2sinA-sinC)•cosB=2sinAcosB-sinCcosB.…(2分)
則sinBcosC+sinCcosB=2sinAcosB.…(4分)
sin(B+C)=2sinAcosB,
故sinA=2sinAcosB.
因為,在△ABC中,sinA≠0.
所以$cosB=\frac{1}{2}$,$B=\frac{π}{3}$.…(6分)
(Ⅱ)由已知及余弦定理得9=4+a2-4acosB,
又$B=\frac{π}{3}$,
所以:a2-2a-5=0,解得:a=1+$\sqrt{6}$,或a=1-$\sqrt{6}$(舍去),
所以:S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×$(1+$\sqrt{6}$)×$2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}+3\sqrt{2}}{2}$…12分
點(diǎn)評 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,誘導(dǎo)公式,特殊角的三角函數(shù)值,余弦定理,三角形面積公式在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 是奇函數(shù) | B. | 是偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 45° | D. | 75° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com