一直線經(jīng)過點P被圓x2+y2=25截得的弦長為8,則此弦所在直線方程為   
【答案】分析:由圓的方程找出圓心的坐標及半徑,由直線被圓截得的弦長,利用垂徑定理得到弦的一半,弦心距及圓的半徑構成直角三角形,再根據(jù)勾股定理求出弦心距,一下分兩種情況考慮:若此弦所在直線方程的斜率不存在,顯然x=-3滿足題意;若斜率存在,設出斜率為k,由直線過P點,由P的坐標及設出的k表示出直線的方程,利用點到直線的距離公式表示出圓心到所設直線的距離d,讓d等于求出的弦心距列出關于k的方程,求出方程的解得到k的值,進而得到所求直線的方程,綜上,得到所有滿足題意的直線方程.
解答:解:由圓的方程,得到圓心坐標為(0,0),半徑r=5,
∵直線被圓截得的弦長為8,
∴弦心距==3,
若此弦所在的直線方程斜率不存在時,顯然x=-3滿足題意;
若此弦所在的直線方程斜率存在,設斜率為k,
∴所求直線的方程為y+=k(x+3),
∴圓心到所設直線的距離d==3,
解得:k=-,
此時所求方程為y+=-(x+3),即3x+4y+15=0,
綜上,此弦所在直線的方程為x+3=0或3x+4y+15=0.
故答案為:x+3=0或3x+4y+15=0
點評:此題考查了直線與圓相交的性質,涉及的知識有垂徑定理,勾股定理,點到直線的距離公式,以及直線的斜截式方程,利用了分類討論的思想,當直線與圓相交時,常常由弦心距,弦的一半及圓的半徑構造直角三角形,利用勾股定理來解決問題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一直線經(jīng)過點P(-3,-
32
)
被圓x2+y2=25截得的弦長為8,則此弦所在直線方程為
x+3=0或3x+4y+15=0
x+3=0或3x+4y+15=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,已知直線l:2
2
x-y+3+8
2
=0
和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
3

(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年浙江省臺州市高一(下)期末數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省揚州市期末數(shù)學復習試卷3(解析版) 題型:解答題

在平面直角坐標系xOy中,已知直線l:2x-y+3+8和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2
(1)求圓C1的方程;
(2)設圓C1和x軸相交于A、B兩點,點P為圓C1上不同于A、B的任意一點,直線PA、PB交y軸于M、N點.當點P變化時,以MN為直徑的圓C2是否經(jīng)過圓C1內一定點?請證明你的結論;
(3)若△RST的頂點R在直線x=-1上,S、T在圓C1上,且直線RS過圓心C1,∠SRT=30°,求點R的縱坐標的范圍.

查看答案和解析>>

同步練習冊答案