在△ABC中,如果sinA:sinB:sinC=5:6:8,那么此三角形最大角的余弦值是    
【答案】分析:根據(jù)正弦定理依據(jù)題設(shè)可求得a,b和c的比例關(guān)系,進(jìn)而令a=5,b=6,c=8,然后利用大角對大邊推斷出c為最大邊,C為最大角,利用余弦定理求得cosC的值.
解答:解:∵sinA:sinB:sinC=5:6:8,
∴由正弦定理可知a:b:c=5:6:8,令a=5,b=6,c=8
cosC===-
故答案為:-
點評:本題主要考查了余弦定理的應(yīng)用和正弦定理的應(yīng)用.考查了考生對三角函數(shù)基礎(chǔ)知識的把握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=
S1cosα+S2cosβ+S3cosγ
S1cosα+S2cosβ+S3cosγ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角B為銳角,已知內(nèi)角A、B、C所對的邊分別為a、b、c,向量
m
=(2sin(A+C),
3
)
n
=(cos2B,2cos2
B
2
-1)
,且向量
m
,
n
共線.
(1)求角B的大;
(2)如果b=1,且S△ABC=
3
2
,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,角B為銳角,已知內(nèi)角A、B、C所對的邊分別為a、b、c,向量
m
=(2sin(A+C),
3
)
n
=(cos2B,2cos2
B
2
-1)
,且向量
m
,
n
共線.
(1)求角B的大小;
(2)如果b=1,且S△ABC=
3
2
,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡中學(xué)高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省合肥市肥西中學(xué)高考數(shù)學(xué)模擬試卷1(文理合卷)(解析版) 題型:解答題

在△ABC中,如果點A在BC邊上的射影是D,△ABC的三邊BC、AC、AB的長依次是a、b、c,則a=b•cosC+c•cosb,類比這一結(jié)論,推廣到空間:在四面體P-ABC中,△ABC、△PAB、△PBC、△PCA的面積依次為S、S1、S2、S3,二面角P-AB-C、P-BC-A、P-CA-B的度數(shù)依次為α、β、γ,則S=   

查看答案和解析>>

同步練習(xí)冊答案