用分析法證明:若a>b>0,m>0,則
a
b
a+m
b+m
考點(diǎn):綜合法與分析法(選修)
專題:證明題
分析:利用分析法,要證
a
b
a+m
b+m
,只需證明m(a-b)>0,依題意,而該式成立,從而可證得結(jié)論.
解答: 解:要證明
a
b
a+m
b+m
,∵a>b>0,m>0,
∴只需證明a(b+m)>b(a+m),
即證am>bm,即證m(a-b)>0,該式顯然成立,
故結(jié)論成立.
點(diǎn)評(píng):本題考查綜合法與分析法證明不等式,突出考查分析法的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某園林局對(duì)1000株樹(shù)木的生長(zhǎng)情況進(jìn)行調(diào)查,其中杉樹(shù)600株,槐樹(shù)400株.現(xiàn)用分層抽樣方法從這1000株樹(shù)木中隨機(jī)抽取100株,杉樹(shù)與槐樹(shù)的樹(shù)干周長(zhǎng)(單位:cm)的抽查結(jié)果如下表:
樹(shù)干周長(zhǎng)(單位:cm)[30,40)[40,50)[50,60)[60,70)
杉樹(shù)61921x
槐樹(shù)420y6
(1)求x,y值及估計(jì)槐樹(shù)樹(shù)干周長(zhǎng)的眾數(shù);
(2)如果杉樹(shù)的樹(shù)干周長(zhǎng)超過(guò)60cm就可以砍伐,請(qǐng)估計(jì)該片園林可以砍伐的杉樹(shù)有多少株?
(3)樹(shù)干周長(zhǎng)在30cm到40cm之間的4株槐樹(shù)有1株患蟲(chóng)害,現(xiàn)要對(duì)這4株樹(shù)逐一進(jìn)行排查直至找出患蟲(chóng)害的樹(shù)木為止.求排查的樹(shù)木恰好為2株的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)要建造一個(gè)容積為18m3,深為2m的長(zhǎng)方體形無(wú)蓋貯水池,如果池底和池壁每平方米的造價(jià)分別為200元和150元,怎樣設(shè)計(jì)該水池可使得能總造價(jià)最低?最低總造價(jià)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“世界睡眠日”定在每年的3月21日,2009年的世界睡眠日主題是“科學(xué)管理睡眠”,以提高公眾對(duì)健康睡眠的自我管理能力和科學(xué)認(rèn)識(shí).為此某網(wǎng)站于2009年3月13日到3月20日持續(xù)一周網(wǎng)上調(diào)查公眾日平均睡眠的時(shí)間(單位:小時(shí)),共有2000人參加調(diào)查,現(xiàn)將數(shù)據(jù)整理分組后如題中表格所示.
(1)求出表中空白處的數(shù)據(jù),并將表格補(bǔ)充完整;
(2)畫出頻率分布直方圖;
(3)為了對(duì)數(shù)據(jù)舉行分析,采用了計(jì)算機(jī)輔助計(jì)算.分析中一部分計(jì)算見(jiàn)算法流程圖,求輸出的S值. 
序號(hào)(i)分組睡眠時(shí)間組中值(mi頻數(shù)
(人數(shù))
頻率(fi
1[4,5)4.580
 
2[5,6)5.55200.26
3[6,7)6.56000.30
4[7,8)7.5
 
 
5[8,9)8.52000.10
6[9,10]9.5400.02

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知PA⊥矩形ABCD所在的平面,M、N分別為AB、PC的中點(diǎn),∠PDA=45°,AB=2,AD=1.
(Ⅰ)求證:MN∥平面PAD;
(Ⅱ)求證:平面PMC⊥平面PCD;
(Ⅲ)求三棱錐M-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點(diǎn)C,BD∥XY,AC、BD相交于E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直三棱柱ABC-A1B1C1中,AC=BC=BB1=2.AB=2
2
,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC1
(Ⅱ)求證:AC1∥平面CDB1
(Ⅲ)求CB1與平面AA1B1B所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cos2x+
3
sin2x,x∈R.
(1)求f(x)的最小正周期及最大值;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
a+3i
1-i
(i為虛數(shù)單位)是實(shí)數(shù),則實(shí)數(shù)a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案