【題目】春節(jié)期間爆發(fā)的新型冠狀病毒(COVID-19)是新中國成立以來感染人數(shù)最多的一次疫情.一個不知道自己已感染但處于潛伏期的甲從疫區(qū)回到某市過春節(jié),回到家鄉(xiāng)后與朋友乙、丙、丁相聚過,最終乙、丙、丁也感染了新冠病毒.可以肯定的是乙受甲感染的,丙是受甲或乙感染的,假設他受甲和受乙感染的概率分別是和.丁是受甲、乙或丙感染的,假設他受甲、乙和丙感染的概率分別是、和.在這種假設之下,乙、丙、丁中直接受甲感染的人數(shù)為.
(1)求的分布列和數(shù)學期望;
(2)該市在發(fā)現(xiàn)在本地出現(xiàn)新冠病毒感染者后,迅速采取應急措施,其中一項措施是各區(qū)必須每天及時,上報新增疑似病例人數(shù).區(qū)上報的連續(xù)天新增疑似病例數(shù)據是“總體均值為,中位數(shù)”,區(qū)上報的連續(xù)天新增疑似病例數(shù)據是“總體均值為,總體方差為”.設區(qū)和區(qū)連續(xù)天上報新增疑似病例人數(shù)分別為和,和分別表示區(qū)和區(qū)第天上報新增疑似病例人數(shù)(和均為非負).記,.
①試比較和的大小;
②求和中較小的那個字母所對應的個數(shù)有多少組?
【答案】(1)詳見解析(2)①②組
【解析】
(1)記事件“丙受甲感染”,事件“丁受甲感染”,則,,的取值為,,再列出的分布列并求期望.
(2)(i)對于區(qū),根據“總體均值為,總體方差為”,有,再根據是非負整數(shù),得到,從而確定,同理對于區(qū),根據“總體均值為,中位數(shù)”,確定.(ii)當時,只有兩種組合,一是一個是,五個是或,一個是;二是一個是,一個是或,一個是或,其余是,分別求得組數(shù)再求和.
(1)記事件“丙受甲感染”,事件“丁受甲感染”,則,
的取值為
所以的分布列為
1 | 2 | 3 | |
0.32 | 0.56 | 0.12 |
(2)(i)對于區(qū),由知,
,因為是非負整數(shù),
所以,即,所以
當中有一個取,有一個取,其余取時,
對于區(qū),當,,時,滿足“總體均值為,中位數(shù)”,此時,
所以
(ii)當時,只有兩種情況:
①有一個是,有五個是或,有一個是;
②有一個是,有一個是或,有一個是或,其余是.
對于①,共有組
對于②,共有組
故共有組
科目:高中數(shù)學 來源: 題型:
【題目】2020年春節(jié)期間,全國人民都在抗擊“新型冠狀病毒肺炎”的斗爭中.當時武漢多家醫(yī)院的醫(yī)用防護物資庫存不足,某醫(yī)院甚至面臨斷貨危機,南昌某生產商現(xiàn)有一批庫存的醫(yī)用防護物資,得知消息后,立即決定無償捐贈這批醫(yī)用防護物資,需要用A、B兩輛汽車把物資從南昌緊急運至武漢.已知從南昌到武漢有兩條合適路線選擇,且選擇兩條路線所用的時間互不影響.據調查統(tǒng)計2000輛汽車,通過這兩條路線從南昌到武漢所用時間的頻數(shù)分布表如下:
所用的時間(單位:小時) | ||||
路線1的頻數(shù) | 200 | 400 | 200 | 200 |
路線2的頻數(shù) | 100 | 400 | 400 | 100 |
假設汽車A只能在約定交貨時間的前5小時出發(fā),汽車B只能在約定交貨時間的前6小時出發(fā)(將頻率視為概率).為最大可能在約定時間送達這批物資,來確定這兩車的路線.
(1)汽車A和汽車B應如何選擇各自的路線.
(2)若路線1、路線2的“一次性費用”分別為3.2萬元、1.6萬元,且每車醫(yī)用物資生產成本為40萬元(其他費用忽略不計),以上費用均由生產商承擔,作為援助金額的一部分.根據這兩輛車到達時間分別計分,具體規(guī)則如下(已知兩輛車到達時間相互獨立,互不影響):
到達時間與約定時間的差x(單位:小時) | |||
該車得分 | 0 | 1 | 2 |
生產商準備根據運輸車得分情況給出現(xiàn)金排款,兩車得分和為0,捐款40萬元,兩車得分和每增加1分,捐款增加20萬元,若汽車A、B用(1)中所選的路線運輸物資,記該生產商在此次援助活動中援助總額為Y(萬元),求隨機變量Y的期望值,(援助總額一次性費用生產成本現(xiàn)金捐款總額)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的四個頂點圍成的菱形的面積為,橢圓的一個焦點為.
(1)求橢圓的方程;
(2)若,為橢圓上的兩個動點,直線,的斜率分別為,,當時,的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.
(1)求的值;
(2)動點在拋物線的準線上,動點在上,若在點處的切線交軸于點,設.求證點在定直線上,并求該定直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的左右焦點分別為,,離心率為,過的直線與橢圓交于,兩點,且周長為8.
(1)求橢圓的標準方程;
(2)是否存在直線,使以為直徑的圓經過坐標原點,若存在求出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校為了了解學生對《3.12植樹節(jié)》活動節(jié)日的相關內容,學校進行了一次10道題的問卷調查,從該校學生中隨機抽取50人,統(tǒng)計了每人答對的題數(shù),將統(tǒng)計結果分成,,,,五組,得到如下頻率分布直方圖.
(1)若答對一題得10分,答錯和未答不得分,估計這50名學生成績的平均分;
(2)若從答對題數(shù)在內的學生中隨機抽取2人,求恰有1人答對題數(shù)在內的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).(為自然對數(shù)的底數(shù))
(1)當時,求在處的切線方程,并討論的單調性;
(2)當時,,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)當a=-1時,
①求曲線y= f(x)在點(0,f(0))處的切線方程;
②求函數(shù)f(x)的最小值;
(II)求證:當時,曲線與有且只有一個交點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】自湖北爆發(fā)新型冠狀病毒肺炎疫情以來,湖北某市醫(yī)護人員和醫(yī)療、生活物資嚴重匱乏,全國各地紛紛馳援.某運輸隊接到從武漢送往該市物資的任務,該運輸隊有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運輸隊每天至少運送240t物資.已知每輛卡車每天往返的次數(shù)為A型卡車5次,B型卡車4次,每輛卡車每天往返的成本A型卡車1200元,B型卡車1800元,則每天派出運輸隊所花的成本最低為_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com