已知等差數(shù)列{an}滿足:a3=5,a4+a8=22.{an}的前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求使得Sn>5n成立的最小正整數(shù)n的值.
(3)設(shè)cn=(﹣1)n+1anan+1,求數(shù)列{cn}的前n項(xiàng)和Tn
解:(1)∵a4+a8=22,∴a6=11,∴a6﹣a3=3d=11﹣5=6,∴d=2,∴a1=1,∴an=2n﹣1. 
(2) ,∴n2>5n,故n的最小正整數(shù)為6.
(3)cn=(﹣1)n+1(2n﹣1)(2n+1)=(﹣1)n+1(4n2﹣1)= 
①n為奇數(shù)時(shí),
Tn=(4×12﹣1)+(1﹣4×22)+(4×32﹣1)+(1﹣4×42)+…+4n2﹣1
=﹣4(22﹣12+42﹣32+…+(n﹣1)2﹣(n﹣2))+4n2﹣1
=﹣4(3+7+11+…+2n﹣3)+4n2﹣1
=2n2+2n﹣2,
②n為偶數(shù)時(shí),
Tn=(4×12﹣1)+(1﹣4×22)+(4×32﹣1)+(1﹣4×42)+…+1﹣4n2
=﹣4(22﹣12+42﹣32+…+(n)2﹣(n﹣1)2)  ﹣4(3+7+11+…+2n﹣1)
=﹣2n2﹣2n,
 .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案